Yunke Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11544899/publications.pdf Version: 2024-02-01

VUNKELL

#	Article	IF	CITATIONS
1	Efficient organic solar cells processed from hydrocarbon solvents. Nature Energy, 2016, 1, .	19.8	2,129
2	High-efficiency non-fullerene organic solar cells enabled by a difluorobenzothiadiazole-based donor polymer combined with a properly matched small molecule acceptor. Energy and Environmental Science, 2015, 8, 520-525.	15.6	379
3	A Tetraphenylethylene Coreâ€Based 3D Structure Small Molecular Acceptor Enabling Efficient Nonâ€Fullerene Organic Solar Cells. Advanced Materials, 2015, 27, 1015-1020.	11.1	362
4	Improved Performance of Allâ€Polymer Solar Cells Enabled by Naphthodiperylenetetraimideâ€Based Polymer Acceptor. Advanced Materials, 2017, 29, 1700309.	11.1	306
5	Ring-Fusion of Perylene Diimide Acceptor Enabling Efficient Nonfullerene Organic Solar Cells with a Small Voltage Loss. Journal of the American Chemical Society, 2017, 139, 16092-16095.	6.6	304
6	Highâ€Performance Nonâ€Fullerene Polymer Solar Cells Based on a Pair of Donor–Acceptor Materials with Complementary Absorption Properties. Advanced Materials, 2015, 27, 7299-7304.	11.1	230
7	A Vinyleneâ€Bridged Perylenediimideâ€Based Polymeric Acceptor Enabling Efficient Allâ€Polymer Solar Cells Processed under Ambient Conditions. Advanced Materials, 2016, 28, 8483-8489.	11.1	222
8	Rollâ€ŧoâ€Roll Printed Largeâ€Area Allâ€Polymer Solar Cells with 5% Efficiency Based on a Low Crystallinity Conjugated Polymer Blend. Advanced Energy Materials, 2017, 7, 1602742.	10.2	214
9	A Difluorobenzoxadiazole Building Block for Efficient Polymer Solar Cells. Advanced Materials, 2016, 28, 1868-1873.	11.1	125
10	Efficient non-fullerene polymer solar cells enabled by tetrahedron-shaped core based 3D-structure small-molecular electron acceptors. Journal of Materials Chemistry A, 2015, 3, 13632-13636.	5.2	100
11	Dramatic performance enhancement for large bandgap thick-film polymer solar cells introduced by a difluorinated donor unit. Nano Energy, 2015, 15, 607-615.	8.2	93
12	Effect of Ringâ€Fusion on Miscibility and Domain Purity: Key Factors Determining the Performance of PDIâ€Based Nonfullerene Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1800234.	10.2	75
13	A Facile Method to Fine‶une Polymer Aggregation Properties and Blend Morphology of Polymer Solar Cells Using Donor Polymers with Randomly Distributed Alkyl Chains. Advanced Energy Materials, 2018, 8, 1701895.	10.2	62
14	Temperatureâ€Dependent Aggregation Donor Polymers Enable Highly Efficient Sequentially Processed Organic Photovoltaics Without the Need of Orthogonal Solvents. Advanced Functional Materials, 2019, 29, 1902478.	7.8	50
15	Chlorinated Thiophene End Groups for Highly Crystalline Alkylated Non-Fullerene Acceptors toward Efficient Organic Solar Cells. Chemistry of Materials, 2019, 31, 6672-6676.	3.2	48
16	The influence of spacer units on molecular properties and solar cell performance of non-fullerene acceptors. Journal of Materials Chemistry A, 2015, 3, 20108-20112.	5.2	41
17	Intramolecular π-stacked perylene-diimide acceptors for non-fullerene organic solar cells. Journal of Materials Chemistry A, 2019, 7, 8136-8143.	5.2	34
18	Side-chain engineering of perylenediimide-vinylene polymer acceptors for high-performance all-polymer solar cells. Materials Chemistry Frontiers, 2017, 1, 1362-1368.	3.2	24

Yunke Li

#	Article	IF	CITATIONS
19	Near-infrared electron acceptors with fused nonacyclic molecular backbones for nonfullerene organic solar cells. Materials Chemistry Frontiers, 2020, 4, 1729-1738.	3.2	23
20	Tweaking the Molecular Geometry of a Tetraperylenediimide Acceptor. ACS Applied Materials & Interfaces, 2019, 11, 6970-6977.	4.0	20
21	Isobenzofulvene-fullerene mono-adducts for organic photovoltaic applications. Journal of Materials Chemistry C, 2015, 3, 977-980.	2.7	11
22	Organic Solar Cells: A Tetraphenylethylene Coreâ€Based 3D Structure Small Molecular Acceptor Enabling Efficient Nonâ€Fullerene Organic Solar Cells (Adv. Mater. 6/2015). Advanced Materials, 2015, 27, 1014-1014.	11.1	9
23	Optically Probing Field-Dependent Charge Dynamics in Non-Fullerene Organic Photovoltaics with Small Interfacial Energy Offsets. Journal of Physical Chemistry C, 2021, 125, 1714-1722.	1.5	5