David H Cribbs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11544033/publications.pdf Version: 2024-02-01

DAVID H CDIRRS

#	Article	IF	CITATIONS
1	Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nature Genetics, 2019, 51, 414-430.	9.4	1,962
2	A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nature Methods, 2005, 2, 599-605.	9.0	1,007
3	Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nature Genetics, 2017, 49, 1373-1384.	9.4	783
4	Aβ Immunotherapy Leads to Clearance of Early, but Not Late, Hyperphosphorylated Tau Aggregates via the Proteasome. Neuron, 2004, 43, 321-332.	3.8	746
5	Structureâ€Activity Analyses of βâ€Amyloid Peptides: Contributions of the β25–35 Region to Aggregation and Neurotoxicity. Journal of Neurochemistry, 1995, 64, 253-265.	2.1	641
6	Gene expression changes in the course of normal brain aging are sexually dimorphic. Proceedings of the United States of America, 2008, 105, 15605-15610.	3.3	520
7	Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. Journal of Neuroinflammation, 2012, 9, 179.	3.1	423
8	Blocking IL-1 Signaling Rescues Cognition, Attenuates Tau Pathology, and Restores Neuronal β-Catenin Pathway Function in an Alzheimer's Disease Model. Journal of Immunology, 2011, 187, 6539-6549.	0.4	359
9	Microfluidic Multicompartment Device for Neuroscience Researchâ€. Langmuir, 2003, 19, 1551-1556.	1.6	278
10	Reduction of Soluble Aβ and Tau, but Not Soluble Aβ Alone, Ameliorates Cognitive Decline in Transgenic Mice with Plaques and Tangles. Journal of Biological Chemistry, 2006, 281, 39413-39423.	1.6	262
11	Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and Alzheimer's disease. Neurobiology of Aging, 2013, 34, 1653-1661.	1.5	261
12	A novel Alzheimer disease locus located near the gene encoding tau protein. Molecular Psychiatry, 2016, 21, 108-117.	4.1	260
13	Patterned cell culture inside microfluidic devices. Lab on A Chip, 2005, 5, 102.	3.1	255
14	Adjuvant-dependent modulation of Th1 and Th2 responses to immunization with beta-amyloid. International Immunology, 2003, 15, 505-514.	1.8	254
15	Localization and Cell Association of C1q in Alzheimer's Disease Brain. Experimental Neurology, 1996, 138, 22-32.	2.0	211
16	Exercise alters the immune profile in Tg2576 Alzheimer mice toward a response coincident with improved cognitive performance and decreased amyloid. Journal of Neuroinflammation, 2008, 5, 13.	3.1	196
17	Prototype Alzheimer's Disease Vaccine Using the Immunodominant B Cell Epitope from β-Amyloid and Promiscuous T Cell Epitope Pan HLA DR-Binding Peptide. Journal of Immunology, 2005, 174, 1580-1586.	0.4	192
18	Effects of Multiple Genetic Loci on Age at Onset in Late-Onset Alzheimer Disease. JAMA Neurology, 2014, 71, 1394.	4.5	166

#	Article	IF	CITATIONS
19	Transethnic genomeâ€wide scan identifies novel Alzheimer's disease loci. Alzheimer's and Dementia, 2017, 13, 727-738.	0.4	166
20	Activation of Caspase-8 in the Alzheimer's Disease Brain. Neurobiology of Disease, 2001, 8, 1006-1016.	2.1	162
21	Correlation between Caspase Activation and Neurofibrillary Tangle Formation in Alzheimer's Disease. American Journal of Pathology, 2001, 158, 189-198.	1.9	156
22	Activation of Ras-ERK Signaling and GSK-3 by Amyloid Precursor Protein and Amyloid Beta Facilitates Neurodegeneration in Alzheimer's Disease. ENeuro, 2017, 4, ENEURO.0149-16.2017.	0.9	149
23	Aspirin-Triggered Lipoxin A4 Stimulates Alternative Activation of Microglia and Reduces Alzheimer Disease–Like Pathology in Mice. American Journal of Pathology, 2013, 182, 1780-1789.	1.9	139
24	Aspartate residue 7 in amyloid β-protein is critical for classical complement pathway activation: Implications for Alzheimer's disease pathogenesis. Nature Medicine, 1997, 3, 077-079.	15.2	134
25	Blocking Aβ ₄₂ Accumulation Delays the Onset and Progression of Tau Pathology via the C Terminus of Heat Shock Protein70-Interacting Protein: A Mechanistic Link between Aβ and Tau Pathology. Journal of Neuroscience, 2008, 28, 12163-12175.	1.7	123
26	Brain gene expression patterns differentiate mild cognitive impairment from normal aged and Alzheimer's disease. Neurobiology of Aging, 2014, 35, 1961-1972.	1.5	114
27	Phagocytosis of Amyloid-β and Inflammation: Two Faces of Innate Immunity in Alzheimer's Disease. Journal of Alzheimer's Disease, 2007, 11, 457-463.	1.2	105
28	Reducing AD-Like Pathology in 3xTg-AD Mouse Model by DNA Epitope Vaccine — A Novel Immunotherapeutic Strategy. PLoS ONE, 2008, 3, e2124.	1.1	100
29	Loss of Muscarinic M1 Receptor Exacerbates Alzheimer's Disease–Like Pathology and Cognitive Decline. American Journal of Pathology, 2011, 179, 980-991.	1.9	100
30	Immunogenicity, Efficacy, Safety, and Mechanism of Action of Epitope Vaccine (Lu AF20513) for Alzheimer's Disease: Prelude to a Clinical Trial. Journal of Neuroscience, 2013, 33, 4923-4934.	1.7	100
31	Fibril Formation and Neurotoxicity by a Herpes Simplex Virus Glycoprotein B Fragment with Homology to the Alzheimer's Aβ Peptide. Biochemistry, 2000, 39, 5988-5994.	1.2	94
32	Alzheimer's Disease Peptide Epitope Vaccine Reduces Insoluble But Not Soluble/Oligomeric Aβ Species in Amyloid Precursor Protein Transgenic Mice. Journal of Neuroscience, 2007, 27, 12721-12731.	1.7	94
33	Anti-Aβ1–11 Antibody Binds to Different β-Amyloid Species, Inhibits Fibril Formation, and Disaggregates Preformed Fibrils but Not the Most Toxic Oligomers. Journal of Biological Chemistry, 2007, 282, 22376-22386.	1.6	90
34	Complement Association with Neurons and β-Amyloid Deposition in the Brains of Aged Individuals with Down Syndrome. Neurobiology of Disease, 2001, 8, 252-265.	2.1	89
35	A Monoclonal Antibody to Amyloid Precursor Protein Induces Neuronal Apoptosis. Journal of Neurochemistry, 2002, 74, 2331-2342.	2.1	86
36	All-D-Enantiomers of β-Amyloid Exhibit Similar Biological Properties to All-L-β-Amyloids. Journal of Biological Chemistry, 1997, 272, 7431-7436.	1.6	82

#	Article	IF	CITATIONS
37	Fas and Fas Ligand are associated with neuritic degeneration in the AD brain and participate in β-amyloid-induced neuronal death. Neurobiology of Disease, 2003, 12, 182-193.	2.1	82
38	Reductions in Amyloid-β-Derived Neuroinflammation, with Minocycline, Restore Cognition but do not Significantly Affect Tau Hyperphosphorylation. Journal of Alzheimer's Disease, 2010, 21, 527-542.	1.2	79
39	Frontal Cortex Neuropathology in Dementia Pugilistica. Journal of Neurotrauma, 2012, 29, 1054-1070.	1.7	77
40	Prototype Alzheimer's disease epitope vaccine induced strong Th2-type anti-Aβ antibody response with Alum to Quil A adjuvant switch. Vaccine, 2006, 24, 2275-2282.	1.7	76
41	Restoration of Lipoxin A4 Signaling Reduces Alzheimer's Disease-Like Pathology in the 3xTg-AD Mouse Model. Journal of Alzheimer's Disease, 2014, 43, 893-903.	1.2	76
42	Amyloid-Î ² Peptide Binds to Cytochrome C Oxidase Subunit 1. PLoS ONE, 2012, 7, e42344.	1.1	73
43	Caspase-Mediated Degeneration in Alzheimer's Disease. American Journal of Pathology, 2004, 165, 353-355.	1.9	61
44	A murine model of inflammation-induced cerebral microbleeds. Journal of Neuroinflammation, 2016, 13, 218.	3.1	61
45	Generation and characterization of the humoral immune response to DNA immunization with a chimericî²-amyloid-interleukin-4 minigene. European Journal of Immunology, 2003, 33, 3232-3241.	1.6	59
46	Importance of IgG2c isotype in the immune response to β-amyloid in amyloid precursor protein/transgenic mice. Neuroscience Letters, 2003, 338, 5-8.	1.0	57
47	Aging and cerebrovascular dysfunction: contribution of hypertension, cerebral amyloid angiopathy, and immunotherapy. Annals of the New York Academy of Sciences, 2010, 1207, 58-70.	1.8	56
48	Chronic Kidney Disease Increases Cerebral Microbleeds in Mouse and Man. Translational Stroke Research, 2020, 11, 122-134.	2.3	51
49	Experimental Investigation of Antibody-Mediated Clearance Mechanisms of Amyloid-β in CNS of Tg-SwDI Transgenic Mice. Journal of Neuroscience, 2007, 27, 13376-13383.	1.7	48
50	Comparative Analysis of H&E and Prussian Blue Staining in a Mouse Model of Cerebral Microbleeds. Journal of Histochemistry and Cytochemistry, 2014, 62, 767-773.	1.3	47
51	Immunogenicity of epitope vaccines targeting different B cell antigenic determinants of human α-synuclein: Feasibility study. Neuroscience Letters, 2014, 560, 86-91.	1.0	44
52	Brain Penetrating Bifunctional Erythropoietin–Transferrin Receptor Antibody Fusion Protein for Alzheimer's Disease. Molecular Pharmaceutics, 2018, 15, 4963-4973.	2.3	42
53	Epitopeâ€based DNA vaccine for Alzheimer's disease: Translational study in macaques. Alzheimer's and Dementia, 2014, 10, 284-295.	0.4	41
54	Humanized monoclonal antibody armanezumab specific to N-terminus of pathological tau: characterization and therapeutic potency. Molecular Neurodegeneration, 2017, 12, 33.	4.4	40

#	Article	IF	CITATIONS
55	Antitumor efficacy of DNA vaccination to the epigenetically acting tumor promoting transcription factor BORIS and CD80 molecular adjuvant. Journal of Cellular Biochemistry, 2006, 98, 1037-1043.	1.2	38
56	Alzheimer's disease AdvaxCpG- adjuvanted MultiTEP-based dual and single vaccines induce high-titer antibodies against various forms of tau and Aβ pathological molecules. Scientific Reports, 2016, 6, 28912.	1.6	37
57	Therapeutic Modulation of Cerebral Microhemorrhage in a Mouse Model of Cerebral Amyloid Angiopathy. Stroke, 2011, 42, 3300-3303.	1.0	36
58	Abeta DNA Vaccination for Alzheimers Disease: Focus on Disease Prevention. CNS and Neurological Disorders - Drug Targets, 2010, 9, 207-216.	0.8	36
59	Novel approaches for immunotherapeutic intervention in Alzheimer's disease. Neurochemistry International, 2006, 49, 113-126.	1.9	35
60	Mannan-Abeta28conjugate prevents Abeta-plaque deposition, but increases microhemorrhages in the brains of vaccinated Tg2576 (APPsw) mice. Journal of Neuroinflammation, 2008, 5, 42.	3.1	35
61	The Bradykinin B1 Receptor Regulates Aβ Deposition and Neuroinflammation in Tg-SwDI Mice. American Journal of Pathology, 2013, 182, 1740-1749.	1.9	35
62	Fibril formation and neurotoxicity by a herpes simplex virus glycoprotein B fragment with homology to Alzheimer' β amyloid peptide. , 2002, , 719-720.		35
63	Mixed Cerebrovascular Disease and the Future of Stroke Prevention. Translational Stroke Research, 2012, 3, 39-51.	2.3	34
64	Novel Abeta peptide immunogens modulate plaque pathology and inflammation in a murine model of Alzheimer's disease. Journal of Neuroinflammation, 2005, 2, 28.	3.1	33
65	DNA epitope vaccine containing complement component C3d enhances anti-amyloid-β antibody production and polarizes the immune response towards a Th2 phenotype. Journal of Neuroimmunology, 2008, 205, 57-63.	1.1	33
66	Î ² amyloid fragments derived from activated platelets deposit in cerebrovascular endothelium: Usage of a novel blood brain barrier endothelial cell model system. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2000, 7, 153-165.	1.4	31
67	Cancer-testis antigen, BORIS based vaccine delivered by dendritic cells is extremely effective against a very aggressive and highly metastatic mouse mammary carcinoma. Cellular Immunology, 2011, 270, 188-197.	1.4	30
68	Bapineuzumab Alters Aβ Composition: Implications for the Amyloid Cascade Hypothesis and Anti-Amyloid Immunotherapy. PLoS ONE, 2013, 8, e59735.	1.1	30
69	Aging exacerbates development of cerebral microbleeds in a mouse model. Journal of Neuroinflammation, 2018, 15, 69.	3.1	30
70	Elicitation of T Cell Responses to Histologically Unrelated Tumors by Immunization with the Novel Cancer-Testis Antigen, Brother of the Regulator of Imprinted Sites. Journal of Immunology, 2007, 178, 566-573.	0.4	28
71	Refinement of a DNA based Alzheimer disease epitope vaccine in rabbits. Human Vaccines and Immunotherapeutics, 2013, 9, 1002-1010.	1.4	28
72	Biologic TNF-α inhibitors reduce microgliosis, neuronal loss, and tau phosphorylation in a transgenic mouse model of tauopathy. Journal of Neuroinflammation, 2021, 18, 312.	3.1	28

#	Article	IF	CITATIONS
73	Aβ-Immunotherapy for Alzheimer's Disease Using Mannan–Amyloid-Beta Peptide Immunoconjugates. DNA and Cell Biology, 2006, 25, 571-580.	0.9	27
74	External force-assisted cell positioning inside microfluidic devices. Biomedical Microdevices, 2007, 9, 15-23.	1.4	26
75	Amyloid-β peptide binds to microtubule-associated protein 1B (MAP1B). Neurochemistry International, 2008, 52, 1030-1036.	1.9	26
76	Immunostimulant Adjuvant Patch Enhances Humoral and Cellular Immune Responses to DNA Immunization. DNA and Cell Biology, 2008, 27, 19-24.	0.9	26
77	The MultiTEP platform-based Alzheimer's disease epitope vaccine activates a broad repertoire of T helper cells in nonhuman primates. , 2014, 10, 271-283.		23
78	Immunization with Amyloid-Î ² Attenuates Inclusion Body Myositis-Like Myopathology and Motor Impairment in a Transgenic Mouse Model. Journal of Neuroscience, 2009, 29, 6132-6141.	1.7	22
79	Restricted V gene usage and VH/VL pairing of mouse humoral response against the N-terminal immunodominant epitope of the amyloid I ² peptide. Molecular Immunology, 2010, 48, 59-72.	1.0	22
80	Delivery of a DNA Vaccine for Alzheimer's Disease by Electroporation versus Gene Gun Generates Potent and Similar Immune Responses. Neurodegenerative Diseases, 2012, 10, 261-264.	0.8	22
81	Immunogenicity of DNA- and recombinant protein-based Alzheimer Disease epitope vaccines. Human Vaccines and Immunotherapeutics, 2014, 10, 1248-1255.	1.4	22
82	β-Amyloid deposition and neurofibrillary tangle association with caspase activation in Down syndrome. Neuroscience Letters, 2002, 330, 99-103.	1.0	21
83	Brain endothelial cell enzymes cleave platelet-retained amyloid precursor protein. Translational Research, 1998, 132, 341-350.	2.4	20
84	Experimental hypertension increases spontaneous intracerebral hemorrhages in a mouse model of cerebral amyloidosis. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 399-404.	2.4	20
85	MultiTEP platform-based DNA epitope vaccine targeting N-terminus of tau induces strong immune responses and reduces tau pathology in THY-Tau22 mice. Vaccine, 2017, 35, 2015-2024.	1.7	20
86	Characterization and preclinical evaluation of the cGMP grade DNA based vaccine, AV-1959D to enter the first-in-human clinical trials. Neurobiology of Disease, 2020, 139, 104823.	2.1	20
87	Testing a MultiTEP-based combination vaccine to reduce AÎ ² and tau pathology in Tau22/5xFAD bigenic mice. Alzheimer's Research and Therapy, 2019, 11, 107.	3.0	19
88	Efficacy and immunogenicity of MultiTEP-based DNA vaccines targeting human α-synuclein: prelude for IND enabling studies. Npj Vaccines, 2022, 7, 1.	2.9	19
89	Blood brain barrier endothelial cells express candidate amyloid precursor protein-cleaving secretases. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 1998, 5, 153-162.	1.4	18
90	Identification of N-Terminally Truncated Pyroglutamate Amyloid-β in Cholesterol-Enriched Diet-Fed Rabbit and AD Brain. Journal of Alzheimer's Disease, 2014, 39, 441-455.	1.2	18

#	Article	IF	CITATIONS
91	A MultiTEP platform-based epitope vaccine targeting the phosphatase activating domain (PAD) of tau: therapeutic efficacy in PS19 mice. Scientific Reports, 2019, 9, 15455.	1.6	18
92	Voltage modulation of a gated ion channel admittance in platinum-supported lipid bilayers. Biosensors and Bioelectronics, 1992, 7, 11-20.	5.3	17
93	Immunization with fibrillar Aβ1–42 in young and aged canines: Antibody generation and characteristics, and effects on CSF and brain Aβ. Vaccine, 2006, 24, 2824-2834.	1.7	16
94	Linear and conformation specific antibodies in aged beagles after prolonged vaccination with aggregated Abeta. Neurobiology of Disease, 2010, 39, 301-310.	2.1	16
95	Genetic Ablation of Hematopoietic Cell Kinase Accelerates Alzheimer's Disease–Like Neuropathology in Tg2576 Mice. Molecular Neurobiology, 2020, 57, 2447-2460.	1.9	15
96	Immunization with a vaccine that combines the expression of MUC1 and B7 co-stimulatory molecules prolongs the survival of mice and delays the appearance of mouse mammary tumors. Clinical and Experimental Metastasis, 2003, 20, 489-498.	1.7	13
97	Relapsing polychondritis with features of dementia with Lewy bodies. Acta Neuropathologica, 2006, 112, 217-225.	3.9	13
98	Comparison of Efficacy of Preventive and Therapeutic Vaccines Targeting the N Terminus of β-Amyloid in an Animal Model of Alzheimer's Disease. Molecular Therapy, 2017, 25, 153-164.	3.7	13
99	Hematologic safety of chronic brainâ€penetrating erythropoietin dosing in APP/PS1 mice. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2019, 5, 627-636.	1.8	13
100	Anti-11[E]-pyroglutamate-modified amyloid β antibodies cross-react with other pathological Aβ species: Relevance for immunotherapy. Journal of Neuroimmunology, 2010, 229, 248-255.	1.1	12
101	Effects of Dabigatran in Mouse Models of Aging and Cerebral Amyloid Angiopathy. Frontiers in Neurology, 2019, 10, 966.	1.1	12
102	Manifestations of Alzheimer's disease genetic risk in the blood are evident in a multiomic analysis in healthy adults aged 18 to 90. Scientific Reports, 2022, 12, 6117.	1.6	12
103	Modulation of a gated ion channel admittance in lipid bilayer membranes. Biosensors and Bioelectronics, 1991, 6, 425-430.	5.3	11
104	Mimotopes of conformational epitopes in fibrillar β-amyloid. Journal of Neuroimmunology, 2004, 156, 10-20.	1.1	10
105	Editorial [Hot Topic:Active and Passive Aβ-Immunotherapy: Preclinical and Clinical Studies and Future Directions: Part I (Guest Editors: Michael G. Agadjanyan and David H. Cribbs)]. CNS and Neurological Disorders - Drug Targets, 2009, 8, 1-6.	0.8	10
106	BTX AgilePulse TM System is an Effective Electroporation Device for Intramuscular and Intradermal Delivery of DNA Vaccine. Current Gene Therapy, 2014, 14, 190-199.	0.9	9
107	Low Concentrations of Anti-Aβ Antibodies Generated in Tg2576 Mice by DNA Epitope Vaccine Fused with 3C3d Molecular Adjuvant Do Not Affect AD Pathology. Human Gene Therapy, 2010, 21, 1569-1576.	1.4	8
108	Immunostimulant patches containing Escherichia coli LT enhance immune responses to DNA- and recombinant protein-based Alzheimer's disease vaccines. Journal of Neuroimmunology, 2014, 268, 50-57.	1.1	8

#	Article	IF	CITATIONS
109	MultiTEP platform–based DNA vaccines for alpha-synucleinopathies: preclinical evaluation of immunogenicity and therapeutic potency. Neurobiology of Aging, 2017, 59, 156-170.	1.5	8
110	Effects of phosphodiesterase 3A modulation on murine cerebral microhemorrhages. Journal of Neuroinflammation, 2017, 14, 114.	3.1	8
111	Editorial [Hot Topic: Active and Passive Aβ-Immunotherapy: Preclinical and Clinical Studies and Future Directions: Part II (Guest Editors: Michael G. Agadjanyan and David H. Cribbs)]. CNS and Neurological Disorders - Drug Targets, 2009, 8, 82-87.	0.8	7
112	Cerebral Blood Flow in Chronic Kidney Disease. Journal of Stroke and Cerebrovascular Diseases, 2021, 30, 105702.	0.7	6
113	Insights Into the Mechanisms of Brain Endothelial Erythrophagocytosis. Frontiers in Cell and Developmental Biology, 2021, 9, 672009.	1.8	5
114	The β-Amyloid Model of Alzheimer's Disease. , 1997, , 73-90.		5
115	Immunogenicity of MultiTEP-Platform-Based Recombinant Protein Vaccine, PV-1950R, Targeting Three B-Cell Antigenic Determinants of Pathological α-Synuclein. International Journal of Molecular Sciences, 2022, 23, 6080.	1.8	5
116	Spectroscopic and deep learning-based approaches to identify and quantify cerebral microhemorrhages. Scientific Reports, 2021, 11, 10725.	1.6	1
117	Abstract W MP94: Acute Inflammation Expands Cerebral Microbleeds in a Mouse Model of Cerebral Amyloid Angiopathy. Stroke, 2014, 45, .	1.0	0
118	Using Digital Pathology to Identify and Quantify Cerebral Microhemorrhages. , 2021, , .		0