List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11543640/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Correlation Investigation between Pyrrole-DNA and Pyrrole-Protein Adducts in Male ICR Mice Exposed to Retrorsine, a Hepatotoxic Pyrrolizidine Alkaloid. Toxins, 2022, 14, 377.	1.5	3
2	Blood Pyrrole–DNA Adducts Define the Early Tumorigenic Risk in Patients with Pyrrolizidine Alkaloid-Induced Liver Injury. Environmental Science and Technology Letters, 2021, 8, 551-557.	3.9	7
3	Developing urinary pyrrole–amino acid adducts as non-invasive biomarkers for identifying pyrrolizidine alkaloids-induced liver injury in human. Archives of Toxicology, 2021, 95, 3191-3204.	1.9	5
4	Quantitation of DNA reactive pyrrolic metabolites of senecionine – A carcinogenic pyrrolizidine alkaloid by LC/MS/MS analysis. Journal of Food and Drug Analysis, 2020, 28, 167-174.	0.9	15
5	Effects of glutathione and cysteine on pyrrolizidine alkaloid-induced hepatotoxicity and DNA adduct formation in rat primary hepatocytes. Journal of Environmental Science and Health, Part C: Toxicology and Carcinogenesis, 2020, 38, 109-123.	0.4	8
6	1-Formyl-7-hydroxy-6,7-dihydro-5 <i>H</i> -pyrrolizine (1-CHO–DHP)–Cysteine Conjugates: Metabolic Formation and Binding to Cellular DNA. Chemical Research in Toxicology, 2020, 33, 2139-2146.	1.7	5
7	1-Formyl-7-hydroxy-6,7-dihydro-5 <i>H</i> -pyrrolizine (1-CHO-DHP): A Potential Proximate Carcinogenic Metabolite of Pyrrolizidine Alkaloids. Chemical Research in Toxicology, 2019, 32, 1193-1203.	1.7	9
8	Primary and secondary pyrrolic metabolites of pyrrolizidine alkaloids form DNA adducts in human A549 cells. Toxicology in Vitro, 2019, 54, 286-294.	1.1	11
9	Pyrrolizidine Alkaloid Secondary Pyrrolic Metabolites Construct Multiple Activation Pathways Leading to DNA Adduct Formation and Potential Liver Tumor Initiation. Chemical Research in Toxicology, 2018, 31, 619-628.	1.7	25
10	Pyrrole-protein adducts – A biomarker of pyrrolizidine alkaloid-induced hepatotoxicity. Journal of Food and Drug Analysis, 2018, 26, 965-972.	0.9	54
11	The long persistence of pyrrolizidine alkaloid-derived DNA adducts in vivo: kinetic study following single and multiple exposures in male ICR mice. Archives of Toxicology, 2017, 91, 949-965.	1.9	43
12	Detection of Pyrrolizidine Alkaloid DNA Adducts in Livers of Cattle Poisoned with <i>Heliotropium europaeum</i> . Chemical Research in Toxicology, 2017, 30, 851-858.	1.7	27
13	7-Glutathione-pyrrole and 7-cysteine-pyrrole are potential carcinogenic metabolites of pyrrolizidine alkaloids. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2017, 35, 69-83.	2.9	20
14	Effects of P25 TiO ₂ Nanoparticles on the Free Radical-Scavenging Ability of Antioxidants upon Their Exposure to Simulated Sunlight. Journal of Agricultural and Food Chemistry, 2017, 65, 9893-9901.	2.4	9
15	Pyrrolizidine alkaloid-derived DNA adducts are common toxicological biomarkers of pyrrolizidine alkaloid N -oxides. Journal of Food and Drug Analysis, 2017, 25, 984-991.	0.9	23
16	Pyrrolizidine Alkaloid-Protein Adducts: Potential Non-invasive Biomarkers of Pyrrolizidine Alkaloid-Induced Liver Toxicity and Exposure. Chemical Research in Toxicology, 2016, 29, 1282-1292.	1.7	39
17	Food Chemical Carcinogens: Sources and Mechanism of Exogenous DNA Adduct Formation. , 2016, , 57-82.		1
18	7- N -Acetylcysteine-pyrrole conjugate—A potent DNA reactive metabolite of pyrrolizidine alkaloids. Journal of Food and Drug Analysis, 2016, 24, 682-694.	0.9	14

#	Article	IF	CITATIONS
19	7-cysteine-pyrrole conjugate: A new potential DNA reactive metabolite of pyrrolizidine alkaloids. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2016, 34, 57-76.	2.9	27
20	Synthesis and phototoxicity of isomeric 7,9-diglutathione pyrrole adducts: Formation of reactive oxygen species and induction of lipid peroxidation. Journal of Food and Drug Analysis, 2015, 23, 577-586.	0.9	19
21	Absolute configuration, stability, and interconversion of 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine valine adducts and their phenylthiohydantoin derivatives. Journal of Food and Drug Analysis, 2015, 23, 318-326.	0.9	7
22	7-Glutathione Pyrrole Adduct: A Potential DNA Reactive Metabolite of Pyrrolizidine Alkaloids. Chemical Research in Toxicology, 2015, 28, 615-620.	1.7	50
23	Platinum Nanoparticles: Efficient and Stable Catechol Oxidase Mimetics. ACS Applied Materials & Interfaces, 2015, 7, 19709-19717.	4.0	98
24	UVA photoirradiation of benzo[<i>a</i>]pyrene metabolites: induction of cytotoxicity, reactive oxygen species, and lipid peroxidation. Toxicology and Industrial Health, 2015, 31, 898-910.	0.6	26
25	Assessment of Safety and Quality Assurance of Herbal Dietary Supplements. , 2014, , 151-168.		4
26	Metabolic Activation of Pyrrolizidine Alkaloids Leading to Phototoxicity and Photogenotoxicity in Human HaCaT Keratinocytes. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2014, 32, 362-384.	2.9	13
27	Reaction of Dehydropyrrolizidine Alkaloids with Valine and Hemoglobin. Chemical Research in Toxicology, 2014, 27, 1720-1731.	1.7	22
28	Mechanisms of nanotoxicity: Generation of reactive oxygen species. Journal of Food and Drug Analysis, 2014, 22, 64-75.	0.9	1,061
29	Enzyme-Like Activity of Nanomaterials. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2014, 32, 186-211.	2.9	139
30	UVA Photoirradiation of Nitro-Polycyclic Aromatic Hydrocarbons—Induction of Reactive Oxygen Species and Formation of Lipid Peroxides â€. International Journal of Environmental Research and Public Health, 2013, 10, 1062-1084.	1.2	17
31	Phototoxicity of Herbal Plants and Herbal Products. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2013, 31, 213-255.	2.9	26
32	Pyrrolizidine Alkaloid-Derived DNA Adducts as a Common Biological Biomarker of Pyrrolizidine Alkaloid-Induced Tumorigenicity. Chemical Research in Toxicology, 2013, 26, 1384-1396.	1.7	83
33	Phototoxicity of Zinc Oxide Nanoparticles in HaCaT Keratinocytes-Generation of Oxidative DNA Damage During UVA and Visible Light Irradiation. Journal of Nanoscience and Nanotechnology, 2013, 13, 3880-3888.	0.9	56
34	Phototoxicity of Kava — Formation of Reactive Oxygen Species Leading to Lipid Peroxidation and DNA Damage. The American Journal of Chinese Medicine, 2012, 40, 1271-1288.	1.5	24
35	Nanoscale ZnO Induces Cytotoxicity and DNA Damage in Human Cell Lines and Rat Primary Neuronal Cells. Journal of Nanoscience and Nanotechnology, 2012, 12, 2126-2135.	0.9	55
36	Phototoxicity and Environmental Transformation of Polycyclic Aromatic Hydrocarbons (PAHs)—Light-Induced Reactive Oxygen Species, Lipid Peroxidation, and DNA Damage. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2012, 30, 1-41.	2.9	179

#	Article	IF	CITATIONS
37	Full Structure Assignments of Pyrrolizidine Alkaloid DNA Adducts and Mechanism of Tumor Initiation. Chemical Research in Toxicology, 2012, 25, 1985-1996.	1.7	53
38	Characteristic ion clusters as determinants for the identification of pyrrolizidine alkaloid <i>N</i> â€oxides in pyrrolizidine alkaloid–containing natural products using HPLC–MS analysis. Journal of Mass Spectrometry, 2012, 47, 331-337.	0.7	43
39	Photoirradiation of dehydropyrrolizidine alkaloids—Formation of reactive oxygen species and induction of lipid peroxidation. Toxicology Letters, 2011, 205, 302-309.	0.4	37
40	Photoirradiation of polycyclic aromatic hydrocarbon diones by UVA light leading to lipid peroxidation. Chemosphere, 2011, 85, 83-91.	4.2	14
41	Hepatotoxicity and Tumorigenicity Induced by Metabolic Activation of Pyrrolizidine Alkaloids in Herbs. Current Drug Metabolism, 2011, 12, 823-834.	0.7	99
42	Photoirradiation of azulene and guaiazulene—Formation of reactive oxygen species and induction of lipid peroxidation. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 211, 123-128.	2.0	27
43	Gene expression profiling in male B6C3F1 mouse livers exposed to kava identifies – Changes in drug metabolizing genes and potential mechanisms linked to kava toxicity. Food and Chemical Toxicology, 2010, 48, 686-696.	1.8	28
44	Cytotoxicity and mutagenicity of retinol with ultraviolet A irradiation in mouse lymphoma cells. Toxicology in Vitro, 2010, 24, 439-444.	1.1	15
45	High-Performance Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry for the Detection and Quantitation of Pyrrolizidine Alkaloid-Derived DNA Adducts <i>in Vitro</i> and <i>in Vivo</i> . Chemical Research in Toxicology, 2010, 23, 637-652.	1.7	65
46	Gene Expression Profiling as an Initial Approach for Mechanistic Studies of Toxicity and Tumorigenicity of Herbal Plants and Herbal Dietary Supplements. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2010, 28, 60-87.	2.9	21
47	Quality Assurance and Safety of Herbal Dietary Supplements. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2009, 27, 91-119.	2.9	55
48	Analysis of gene expression changes of drug metabolizing enzymes in the livers of F344 rats following oral treatment with kava extract. Food and Chemical Toxicology, 2009, 47, 433-442.	1.8	49
49	Formation of DHP-derived DNA adducts from metabolic activation of the prototype heliotridine-type pyrrolizidine alkaloid, heliotrine. Toxicology Letters, 2008, 178, 77-82.	0.4	35
50	UVA Photoirradiation of Oxygenated Benz[a]anthracene and 3-Methylcholanthene - Generation of Singlet Oxygen and Induction of Lipid Peroxidation. International Journal of Environmental Research and Public Health, 2008, 5, 26-31.	1.2	15
51	Physiological Role of Retinyl Palmitate in the Skin. Vitamins and Hormones, 2007, 75, 223-256.	0.7	23
52	Photo-irradiation of Aloe vera by UVA—Formation of free radicals, singlet oxygen, superoxide, and induction of lipid peroxidationâ~†. Toxicology Letters, 2007, 168, 165-175.	0.4	51
53	UVA Photoirradiation of Methylated Benzo[a]pyrene and Benzo[e]pyrene leading to Induction of Lipid Peroxidation. International Journal of Environmental Research and Public Health, 2007, 4, 153-157.	1.2	6
54	Synthesis and Photoirradiation of Isomeric Ethylchrysenes by UVA Light Leading to Lipid Peroxidation. International Journal of Environmental Research and Public Health, 2007, 4, 145-152.	1.2	7

#	Article	IF	CITATIONS
55	Photodecomposition of Vitamin A and Photobiological Implications for the Skinâ€. Photochemistry and Photobiology, 2007, 83, 409-424.	1.3	50
56	UVA photoirradiation of retinyl palmitate—Formation of singlet oxygen and superoxide, and their role in induction of lipid peroxidation. Toxicology Letters, 2006, 163, 30-43.	0.4	69
57	Photomutagenicity of Anhydroretinol and 5,6-Epoxyretinyl Palmitate in Mouse Lymphoma Cells. Chemical Research in Toxicology, 2006, 19, 1435-1440.	1.7	20
58	Formation of DHP-derived DNA adducts from metabolic activation of the prototype heliotridine-type pyrrolizidine alkaloid, lasiocarpine. Cancer Letters, 2006, 231, 138-145.	3.2	48
59	Photoirradiation of Polycyclic Aromatic Hydrocarbons with UVA Light – A Pathway Leading to the Generation of Reactive Oxygen Species, Lipid Peroxidation, and DNA Damage. International Journal of Environmental Research and Public Health, 2006, 3, 348-354.	1.2	73
60	Photoirradiation of Retinyl Palmitate in Ethanol with Ultraviolet Light - Formation of Photodecomposition Products, Reactive Oxygen Species, and Lipid Peroxides. International Journal of Environmental Research and Public Health, 2006, 3, 185-190.	1.2	25
61	Photodecomposition and Phototoxicity of Natural Retinoids. International Journal of Environmental Research and Public Health, 2005, 2, 147-155.	1.2	58
62	Photodecomposition of Retinyl Palmitate in Ethanol by UVA LightFormation of Photodecomposition Products, Reactive Oxygen Species, and Lipid Peroxidesâ€. Chemical Research in Toxicology, 2005, 18, 129-138.	1.7	59
63	Metabolic Formation of DHP-Derived DNA Adducts from a Representative Otonecine Type Pyrrolizidine Alkaloid Clivorine and the Extract ofLigularia hodgsonniiHook. Chemical Research in Toxicology, 2004, 17, 702-708.	1.7	48
64	Pyrrolizidine Alkaloids—Genotoxicity, Metabolism Enzymes, Metabolic Activation, and Mechanisms. Drug Metabolism Reviews, 2004, 36, 1-55.	1.5	511
65	Identification of DNA Adducts Derived from Riddelliine, a Carcinogenic Pyrrolizidine Alkaloid. Chemical Research in Toxicology, 2003, 16, 1130-1137.	1.7	46
66	Human Liver Microsomal Metabolism and DNA Adduct Formation of the Tumorigenic Pyrrolizidine Alkaloid, Riddelliine. Chemical Research in Toxicology, 2003, 16, 66-73.	1.7	76
67	Correlation of DNA adduct formation and riddelliine-induced liver tumorigenesis in F344 rats and B6C3F1 mice. Cancer Letters, 2003, 193, 119-125.	3.2	44
68	Genotoxic Pyrrolizidine Alkaloids — Mechanisms Leading to DNA Adduct Formation and Tumorigenicity. International Journal of Molecular Sciences, 2002, 3, 948-964.	1.8	65