
Asuka Morizane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1154286/publications.pdf Version: 2024-02-01

ASILKA MODIZANE

#	Article	IF	CITATIONS
1	A more efficient method to generate integration-free human iPS cells. Nature Methods, 2011, 8, 409-412.	19.0	1,736
2	Human iPS cell-derived dopaminergic neurons function in a primate Parkinson's disease model. Nature, 2017, 548, 592-596.	27.8	528
3	A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Scientific Reports, 2014, 4, 3594.	3.3	511
4	Drug Screening for ALS Using Patient-Specific Induced Pluripotent Stem Cells. Science Translational Medicine, 2012, 4, 145ra104.	12.4	465
5	Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. Journal of Clinical Investigation, 2005, 115, 102-109.	8.2	418
6	Transplantation of Human Embryonic Stem Cell-Derived Cells to a Rat Model of Parkinson's Disease: Effect of In Vitro Differentiation on Graft Survival and Teratoma Formation. Stem Cells, 2006, 24, 1433-1440.	3.2	394
7	Isolation of Human Induced Pluripotent Stem Cell-Derived Dopaminergic Progenitors by Cell Sorting for Successful Transplantation. Stem Cell Reports, 2014, 2, 337-350.	4.8	373
8	Direct Comparison of Autologous and Allogeneic Transplantation of iPSC-Derived Neural Cells in the Brain of a Nonhuman Primate. Stem Cell Reports, 2013, 1, 283-292.	4.8	233
9	Differentiation-defective phenotypes revealed by large-scale analyses of human pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20569-20574.	7.1	206
10	Pre-clinical study of induced pluripotent stem cell-derived dopaminergic progenitor cells for Parkinson's disease. Nature Communications, 2020, 11, 3369.	12.8	184
11	MHC matching improves engraftment of iPSC-derived neurons in non-human primates. Nature Communications, 2017, 8, 385.	12.8	178
12	Prolonged Maturation Culture Favors a Reduction in the Tumorigenicity and the Dopaminergic Function of Human ESCâ€Derived Neural Cells in a Primate Model of Parkinson's Disease. Stem Cells, 2012, 30, 935-945.	3.2	155
13	Fluorescence-Activated Cell Sorting-Based Purification of Embryonic Stem Cell-Derived Neural Precursors Averts Tumor Formation after Transplantation. Stem Cells, 2006, 24, 763-771.	3.2	153
14	Smallâ€molecule inhibitors of bone morphogenic protein and activin/nodal signals promote highly efficient neural induction from human pluripotent stem cells. Journal of Neuroscience Research, 2011, 89, 117-126.	2.9	151
15	Survival of Human Induced Pluripotent Stem Cell–Derived Midbrain Dopaminergic Neurons in the Brain of a Primate Model of Parkinson's Disease. Journal of Parkinson's Disease, 2011, 1, 395-412.	2.8	110
16	Pluripotency of reprogrammed somatic genomes in embryonic stem hybrid cells. Developmental Dynamics, 2003, 227, 504-510.	1.8	88
17	MicroRNA-302 switch to identify and eliminate undifferentiated human pluripotent stem cells. Scientific Reports, 2016, 6, 32532.	3.3	82
18	From bench to bed: the potential of stem cells for the treatment of Parkinson's disease. Cell and Tissue Research, 2008, 331, 323-336.	2.9	81

ASUKA MORIZANE

#	Article	IF	CITATIONS
19	Optimal conditions for in vivo induction of dopaminergic neurons from embryonic stem cells through stromal cell-derived inducing activity. Journal of Neuroscience Research, 2002, 69, 934-939.	2.9	79
20	Generation of graftable dopaminergic neuron progenitors from mouse ES cells by a combination of coculture and neurosphere methods. Journal of Neuroscience Research, 2006, 83, 1015-1027.	2.9	61
21	Survival and differentiation of neural progenitor cells derived from embryonic stem cells and transplanted into ischemic brain. Journal of Neurosurgery, 2005, 103, 304-310.	1.6	60
22	Axonal Extensions along Corticospinal Tracts from Transplanted Human Cerebral Organoids. Stem Cell Reports, 2020, 15, 467-481.	4.8	49
23	Functional recovery of the murine brain ischemia model using human induced pluripotent stem cell-derived telencephalic progenitors. Brain Research, 2012, 1459, 52-60.	2.2	45
24	Meningeal cells induce dopaminergic neurons from embryonic stem cells. European Journal of Neuroscience, 2008, 27, 261-268.	2.6	42
25	Induction of the germ cell fate from pluripotent stem cells in cynomolgus monkeysâ€. Biology of Reproduction, 2020, 102, 620-638.	2.7	40
26	Myotonic dystrophy type 1 patient-derived iPSCs for the investigation of CTG repeat instability. Scientific Reports, 2017, 7, 42522.	3.3	34
27	Î ³ -Secretase Inhibitors Prevent Overgrowth of Transplanted Neural Progenitors Derived from Human-Induced Pluripotent Stem Cells. Stem Cells and Development, 2013, 22, 374-382.	2.1	33
28	Idiopathic Parkinson's disease patientâ€derived induced pluripotent stem cells function as midbrain dopaminergic neurons in rodent brains. Journal of Neuroscience Research, 2017, 95, 1829-1837.	2.9	28
29	A simple method for largeâ€scale generation of dopamine neurons from human embryonic stem cells. Journal of Neuroscience Research, 2010, 88, 3467-3478.	2.9	21
30	Risks and Mechanisms of Oncological Disease Following Stem Cell Transplantation. Stem Cell Reviews and Reports, 2010, 6, 411-424.	5.6	18
31	X-linked severe combined immunodeficiency (X-SCID) rats for xeno-transplantation and behavioral evaluation. Journal of Neuroscience Methods, 2015, 243, 68-77.	2.5	18
32	Enhanced Axonal Extension of Subcortical Projection Neurons Isolated from Murine Embryonic Cortex using Neuropilin-1. Frontiers in Cellular Neuroscience, 2017, 11, 123.	3.7	17
33	Exercise Promotes Neurite Extensions from Grafted Dopaminergic Neurons in the Direction of the Dorsolateral Striatum in Parkinson's Disease Model Rats. Journal of Parkinson's Disease, 2020, 10, 511-521.	2.8	13
34	Neural Induction with a Dopaminergic Phenotype from Human Pluripotent Stem Cells Through a Feeder-Free Floating Aggregation Culture. Methods in Molecular Biology, 2013, 1018, 11-19.	0.9	12
35	Cell Therapy for Parkinson's Disease. Neurologia Medico-Chirurgica, 2016, 56, 102-109.	2.2	11
36	Cryopreservation of Induced Pluripotent Stem Cell-Derived Dopaminergic Neurospheres for Clinical Application. Journal of Parkinson's Disease, 2022, 12, 871-884.	2.8	8

#	Article	IF	CITATIONS
37	Evading the Immune System: Immune Modulation and Immune Matching in Cell Replacement Therapies for Parkinson's Disease. Journal of Parkinson's Disease, 2021, 11, S167-S172.	2.8	6
38	Pretreatment with Perlecan-Conjugated Laminin-E8 Fragment Enhances Maturation of Grafted Dopaminergic Progenitors in Parkinson's Disease Model. Stem Cells Translational Medicine, 2022, 11, 767-777.	3.3	5
39	MicroRNA-Based Separation of Cortico-Fugal Projection Neuron-Like Cells Derived From Embryonic Stem Cells. Frontiers in Neuroscience, 2019, 13, 1141.	2.8	3
40	Future Cell- and Gene-Based Therapies for Parkinson's Disease. , 2008, , 145-156.		0
41	Embryonic Stem Cell Transplantation for the Treatment of Parkinson's Disease. , 2010, , 245-254.		Ο