Sunil K Panchal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11541333/publications.pdf

Version: 2024-02-01

43 papers 2,516 citations

304602 22 h-index 289141 40 g-index

44 all docs 44 docs citations

44 times ranked 3671 citing authors

#	Article	IF	Citations
1	High-carbohydrate High-fat Diet–induced Metabolic Syndrome and Cardiovascular Remodeling in Rats. Journal of Cardiovascular Pharmacology, 2011, 57, 51-64.	0.8	348
2	Rodent Models for Metabolic Syndrome Research. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-14.	3.0	281
3	Quercetin Ameliorates Cardiovascular, Hepatic, and Metabolic Changes in Diet-Induced Metabolic Syndrome in Rats. Journal of Nutrition, 2012, 142, 1026-1032.	1.3	209
4	Lipid redistribution by \hat{l}_{\pm} -linolenic acid-rich chia seed inhibits stearoyl-CoA desaturase-1 and induces cardiac and hepatic protection in diet-induced obese rats. Journal of Nutritional Biochemistry, 2012, 23, 153-162.	1.9	142
5	Rutin Attenuates Metabolic Changes, Nonalcoholic Steatohepatitis, and Cardiovascular Remodeling in High-Carbohydrate, High-Fat Diet-Fed Rats. Journal of Nutrition, 2011, 141, 1062-1069.	1.3	136
6	Ellagic acid attenuates high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. European Journal of Nutrition, 2013, 52, 559-568.	1.8	133
7	Effects of ALA, EPA and DHA in high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. Journal of Nutritional Biochemistry, 2013, 24, 1041-1052.	1.9	131
8	High-carbohydrate, High-fat Diet–induced Metabolic Syndrome and Cardiovascular Remodeling in Rats: Erratum. Journal of Cardiovascular Pharmacology, 2011, 57, 610.	0.8	128
9	Chlorogenic acid attenuates high-carbohydrate, high-fat diet–induced cardiovascular, liver, and metabolic changes in rats. Nutrition Research, 2019, 62, 78-88.	1.3	94
10	Coffee Extract Attenuates Changes in Cardiovascular and Hepatic Structure and Function without Decreasing Obesity in High-Carbohydrate, High-Fat Diet-Fed Male Rats. Journal of Nutrition, 2012, 142, 690-697.	1.3	89
11	Caffeine attenuates metabolic syndrome in diet-induced obese rats. Nutrition, 2012, 28, 1055-1062.	1.1	75
12	Saturated fatty acids induce development of both metabolic syndrome and osteoarthritis in rats. Scientific Reports, 2017, 7, 46457.	1.6	71
13	Obesity-associated metabolic syndrome spontaneously induces infiltration of pro-inflammatory macrophage in synovium and promotes osteoarthritis. PLoS ONE, 2017, 12, e0183693.	1.1	69
14	Cyanidin 3-glucoside improves diet-induced metabolic syndrome in rats. Pharmacological Research, 2015, 102, 208-217.	3.1	59
15	Chronic high-carbohydrate, high-fat feeding in rats induces reversible metabolic, cardiovascular, and liver changes. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E1472-E1482.	1.8	57
16	Kappaphycus alvarezii as a Food Supplement Prevents Diet-Induced Metabolic Syndrome in Rats. Nutrients, 2017, 9, 1261.	1.7	50
17	Carrageenans from the Red Seaweed Sarconema filiforme Attenuate Symptoms of Diet-Induced Metabolic Syndrome in Rats. Marine Drugs, 2020, 18, 97.	2.2	45

Cardioprotective and hepatoprotective effects of ellagitannins from European oak bark (Quercus) Tj ETQq0 0 0 rgBT Overlock 10 Tf 50

#	Article	IF	CITATIONS
19	Physiological and Metabolic Effects of Yellow Mangosteen (Garcinia dulcis) Rind in Rats with Diet-Induced Metabolic Syndrome. International Journal of Molecular Sciences, 2020, 21, 272.	1.8	27
20	Low-Dose Curcumin Nanoparticles Normalise Blood Pressure in Male Wistar Rats with Diet-Induced Metabolic Syndrome. Nutrients, 2019, 11, 1542.	1.7	25
21	Pelargonidin 3-glucoside-enriched strawberry attenuates symptoms of DSS-induced inflammatory bowel disease and diet-induced metabolic syndrome in rats. European Journal of Nutrition, 2020, 59, 2905-2918.	1.8	24
22	Modulation of gut microbiota by spent coffee grounds attenuates dietâ€induced metabolic syndrome in rats. FASEB Journal, 2020, 34, 4783-4797.	0.2	24
23	The edible native Australian fruit, Davidson's plum (Davidsonia pruriens), reduces symptoms in rats with diet-induced metabolic syndrome. Journal of Functional Foods, 2019, 56, 204-215.	1.6	23
24	Green coffee ameliorates components of diet-induced metabolic syndrome in rats. Journal of Functional Foods, 2019, 57, 141-149.	1.6	21
25	Caulerpa lentillifera (Sea Grapes) Improves Cardiovascular and Metabolic Health of Rats with Diet-Induced Metabolic Syndrome. Metabolites, 2020, 10, 500.	1.3	20
26	Modulation of tissue fatty acids by <scp>l < /scp>-carnitine attenuates metabolic syndrome in diet-induced obese rats. Food and Function, 2015, 6, 2496-2506.</scp>	2.1	19
27	Achacha (Garcinia humilis) Rind Improves Cardiovascular Function in Rats with Diet-Induced Metabolic Syndrome. Nutrients, 2018, 10, 1425.	1.7	18
28	The influence of wasabi on the gut microbiota of high-carbohydrate, high-fat diet-induced hypertensive Wistar rats. Journal of Human Hypertension, 2021, 35, 170-180.	1.0	17
29	Coffee Pulp, a By-Product of Coffee Production, Modulates Gut Microbiota and Improves Metabolic Syndrome in High-Carbohydrate, High-Fat Diet-Fed Rats. Pathogens, 2021, 10, 1369.	1.2	16
30	Nannochloropsis oceanica as a Microalgal Food Intervention in Diet-Induced Metabolic Syndrome in Rats. Nutrients, 2021, 13, 3991.	1.7	16
31	Coconut Products Improve Signs of Diet-Induced Metabolic Syndrome in Rats. Plant Foods for Human Nutrition, 2017, 72, 418-424.	1.4	15
32	Tropical foods as functional foods for metabolic syndrome. Food and Function, 2020, 11, 6946-6960.	2.1	15
33	Saskatoon Berry Amelanchier alnifolia Regulates Glucose Metabolism and Improves Cardiovascular and Liver Signs of Diet-Induced Metabolic Syndrome in Rats. Nutrients, 2020, 12, 931.	1.7	15
34	Cyanidin 3-glucoside from Queen Garnet plums and purple carrots attenuates DSS-induced inflammatory bowel disease in rats. Journal of Functional Foods, 2019, 56, 194-203.	1.6	13
35	Rind from Purple Mangosteen (Garcinia mangostana) Attenuates Diet-Induced Physiological and Metabolic Changes in Obese Rats. Nutrients, 2021, 13, 319.	1.7	13
36	Dietary Saturated Fatty Acids Modulate Pain Behaviour in Trauma-Induced Osteoarthritis in Rats. Nutrients, 2020, 12, 509.	1.7	12

#	Article	IF	CITATIONS
37	Linseed Components Are More Effective Than Whole Linseed in Reversing Diet-Induced Metabolic Syndrome in Rats. Nutrients, 2019, 11, 1677.	1.7	11
38	Brown Seaweed Sargassum siliquosum as an Intervention for Diet-Induced Obesity in Male Wistar Rats. Nutrients, 2021, 13, 1754.	1.7	11
39	Attenuation of Metabolic Syndrome by EPA/DHA Ethyl Esters in Testosterone-Deficient Obese Rats. Marine Drugs, 2018, 16, 182.	2.2	7
40	Linseed as a Functional Food for the Management of Obesity. , 2016, , 173-187.		2
41	Food as Medicine ¹ . Canadian Journal of Physiology and Pharmacology, 2013, 91, v-vi.	0.7	1
42	Reply to: Pelargonidin and its glycosides as dietary chemopreventives attenuating inflammatory bowel disease symptoms through the aryl hydrocarbon receptor. European Journal of Nutrition, 2020, 59, 3865-3866.	1.8	0
43	Anti-inflammatory Components from Functional Foods for Obesity. , 2020, , 285-303.		0