Anil Mahapatro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11541223/publications.pdf

Version: 2024-02-01

471509 377865 1,500 39 17 34 citations h-index g-index papers 40 40 40 2286 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. Journal of Nanobiotechnology, 2011, 9, 55.	9.1	538
2	Lipase-Catalyzed Polycondensations:Â Effect of Substrates and Solvent on Chain Formation, Dispersity, and End-Group Structure. Biomacromolecules, 2003, 4, 544-551.	5.4	141
3	Mild, Solvent-Free ω-Hydroxy Acid Polycondensations Catalyzed byCandidaantarcticaLipase B. Biomacromolecules, 2004, 5, 62-68.	5.4	102
4	Solvent-Free Adipic Acid/1,8-Octanediol Condensation Polymerizations Catalyzed by Candidaantartica Lipase B. Macromolecules, 2004, 37, 35-40.	4.8	100
5	Bio-functional nano-coatings on metallic biomaterials. Materials Science and Engineering C, 2015, 55, 227-251.	7. 3	100
6	Surface Modification of Functional Self-Assembled Monolayers on 316L Stainless Steel via Lipase Catalysis. Langmuir, 2006, 22, 901-905.	3.5	65
7	Investigating TiO2–HA–PCL hybrid coating as an efficient corrosion resistant barrier of ZM21 Mg alloy. Journal of Magnesium and Alloys, 2021, 9, 627-646.	11.9	47
8	Fabrication of magnesium-based metallic scaffolds for bone tissue engineering. Materials Technology, 2018, 33, 173-182.	3.0	39
9	The use of alkanethiol self-assembled monolayers on 316L stainless steel for coronary artery stent nanomedicine applications: an oxidative and in vitro stability study. Nanomedicine: Nanotechnology, Biology, and Medicine, 2006, 2, 182-190.	3.3	35
10	Stability of phosphonic self assembled monolayers (SAMs) on cobalt chromium (Co–Cr) alloy under oxidative conditions. Applied Surface Science, 2011, 257, 5605-5612.	6.1	33
11	Highly Sensitive and Reliable Electrospun Polyaniline Nanofiber Based Biosensor as a Robust Platform for COX-2 Enzyme Detections. Fibers and Polymers, 2019, 20, 966-974.	2.1	30
12	Microwave assisted lipase catalyzed solvent-free poly-l $\hat{\mu}$ -caprolactone synthesis. Green Chemistry Letters and Reviews, 2011, 4, 73-79.	4.7	29
13	Metals for Biomedical Applications and Devices. Journal of Biomaterials and Tissue Engineering, 2012, 2, 259-268.	0.1	23
14	Polymers for Biomedical Applications. ACS Symposium Series, 2008, , 1-7.	0.5	22
15	Nanosized Controlled Surface Pretreatment of Biometallic Alloy 316L Stainless Steel. Journal of Biomedical Nanotechnology, 2011, 7, 794-800.	1.1	22
16	In vitro stability study of organophosphonic self assembled monolayers (SAMs) on cobalt chromium (Co–Cr) alloy. Materials Science and Engineering C, 2013, 33, 2050-2058.	7.3	22
17	Drug Delivery from Therapeutic Self-Assembled Monolayers (T-SAMs) on 316L Stainless Steel. Current Topics in Medicinal Chemistry, 2008, 8, 281-289.	2.1	21
18	Silicon Based Nanocoatings on Metal Alloys and Their Role in Surface Engineering. Silicon, 2010, 2, 117-151.	3.3	18

#	Article	IF	CITATIONS
19	Nanolayers on Magnesium (Mg) Alloy for Metallic Bone Tissue Engineering Scaffolds. Journal of Biomaterials and Tissue Engineering, 2013, 3, 196-204.	0.1	17
20	Formation of Nanosized Phosphonic Acid Self Assembled Monolayers on Cobalt-Chromium Alloy for Potential Biomedical Applications. Journal of Biomedical Nanotechnology, 2010, 6, 117-128.	1.1	16
21	Evaluation of corrosion resistance, mechanical integrity loss and biocompatibility of PCL/HA/TiO2 hybrid coated biodegradable ZM21 Mg alloy. Journal of Magnesium and Alloys, 2022, 10, 3179-3204.	11.9	15
22	Spectroscopic Evaluations of Interfacial Oxidative Stability of Phosphonic Nanocoatings on Magnesium. Journal of Spectroscopy, 2015, 2015, 1-8.	1.3	13
23	Fabrication, Biofunctionality and Biocompatibility Evaluations of Octadecyltrichlorosilane Nano Coatings on Magnesium Alloy. Journal of Nanoengineering and Nanomanufacturing, 2015, 5, 294-303.	0.3	9
24	Bioceramic Coatings on Magnesium Alloys. Journal of Bio- and Tribo-Corrosion, 2017, 3, 1.	2.6	8
25	Nanoscale Surface Pretreatment of Biomedical Co–Cr Alloy. Journal of Surfaces and Interfaces of Materials, 2015, 3, 67-74.	0.5	6
26	Surface Patterning Using Self Assembled Monolayers (SAMs). ACS Symposium Series, 2010, , 65-107.	0.5	5
27	Determination of Ionic Liquid and Magnesium Compatibility via Microscopic Evaluations. Journal of Advanced Microscopy Research, 2015, 10, 89-92.	0.3	5
28	Electrochemical Corrosion Study of Protective Organic Thin Film Coating on Magnesium Alloy. ECS Transactions, 2012, 41, 115-119.	0.5	4
29	Preliminary validation of a dynamic electrochemical biodegradation test bench in pseudo-physiological conditions. Materials Technology, 2018, 33, 135-144.	3.0	3
30	Surface Modification of Cobalt Chromium Alloy via Phosphonic Acid Organic Nanosized Thin Films. ECS Transactions, 2010, 33, 91-95.	0.5	2
31	Ambient Atmospheric Stability of Organic Thin Films on Metal Alloys. ECS Transactions, 2012, 41, 61-65.	0.5	2
32	Microwave-Assisted Biocatalytic Polymerizations. ACS Symposium Series, 2013, , 69-80.	0.5	2
33	Effect of polymer coating characteristics on the biodegradation and biocompatibility behavior of magnesium alloy. Polymer-Plastics Technology and Materials, 2020, 59, 301-310.	1.3	2
34	Evaluation of Polyvinylidene Fluoride (PVDF) integrated sensor for physiological temperature detection. Materials Technology, 0, , 1-9.	3.0	2
35	Magnesium Based Biodegradable Metallic Implant Materials: Corrosion Control and Evaluation of Surface Coatings. Innovations in Corrosion and Materials Science, 2019, 9, 3-27.	0.2	1
36	Hybrid polymeric-metallic foams for bone tissue engineering scaffolds: mechanical properties and biofunctionality evaluations. International Journal of Polymeric Materials and Polymeric Biomaterials, $0, 1-9$.	3.4	1

3

ANIL MAHAPATRO

#	Article	IF	CITATIONS
37	Biocatalysis on Surfaces: A Microreview. ACS Symposium Series, 2008, , 180-193.	0.5	O
38	Surface Engineering in Wearable Sensors for Medical Diagnostic Applications. , 2020, , 101-122.		0
39	Surface Reactions: Bio-catalysis an Emerging Alternative. , 2008, , 43-62.		O