## David Hysell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1154065/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Comparison of COSMIC ionospheric measurements with groundâ€based observations and model predictions: Preliminary results. Journal of Geophysical Research, 2007, 112, .                                | 3.3 | 266       |
| 2  | Threeâ€dimensional simulation of the coupled Perkins and <i>E</i> <sub>s</sub> â€layer instabilities in the nighttime midlatitude ionosphere. Journal of Geophysical Research, 2009, 114, .            | 3.3 | 152       |
| 3  | Collisional shear instability in the equatorialFregion ionosphere. Journal of Geophysical Research, 2004, 109, .                                                                                       | 3.3 | 150       |
| 4  | JULIA radar studies of equatorial spreadF. Journal of Geophysical Research, 1998, 103, 29155-29167.                                                                                                    | 3.3 | 136       |
| 5  | Equatorial spread-F initiation: Post-sunset vortex, thermospheric winds, gravity waves. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69, 2416-2427.                                     | 1.6 | 124       |
| 6  | Common volume coherent and incoherent scatter radar observations of mid-latitude sporadic<br>E-layers and QP echoes. Annales Geophysicae, 2004, 22, 3277-3290.                                         | 1.6 | 76        |
| 7  | Imaging radar observations and theory of type I and type II quasi-periodic echoes. Journal of<br>Geophysical Research, 2002, 107, SIA 7-1.                                                             | 3.3 | 67        |
| 8  | Optimal aperture synthesis radar imaging. Radio Science, 2006, 41, n/a-n/a.                                                                                                                            | 1.6 | 66        |
| 9  | Radar imaging of equatorialFregion irregularities with maximum entropy interferometry. Radio<br>Science, 1996, 31, 1567-1578.                                                                          | 1.6 | 59        |
| 10 | Onset conditions for equatorial spreadFdetermined during EQUIS II. Geophysical Research Letters, 2005, 32, .                                                                                           | 4.0 | 50        |
| 11 | VHF radar and rocket observations of equatorial spreadFon Kwajalein. Journal of Geophysical<br>Research, 1994, 99, 15065.                                                                              | 3.3 | 49        |
| 12 | JULIA radar studies of electric fields in the equatorial electrojet. Geophysical Research Letters, 1997,<br>24, 1687-1690.                                                                             | 4.0 | 46        |
| 13 | The 30 MHz imaging radar observations of auroral irregularities during the JOULE campaign. Journal of Geophysical Research, 2005, 110, .                                                               | 3.3 | 46        |
| 14 | Sporadic <i>E</i> layer observations over Arecibo using coherent and incoherent scatter radar:<br>Assessing dynamic stability in the lower thermosphere. Journal of Geophysical Research, 2009, 114, . | 3.3 | 46        |
| 15 | Bottom-type scattering layers and equatorial spread <i>F</i> . Annales<br>Geophysicae, 2004, 22, 4061-4069.                                                                                            | 1.6 | 44        |
| 16 | Threeâ€dimensional numerical simulation of equatorial <i>F</i> region plasma irregularities with bottomside shear flow. Journal of Geophysical Research, 2010, 115, .                                  | 3.3 | 44        |
| 17 | Effects of large horizontal winds on the equatorial electrojet. Journal of Geophysical Research, 2002, 107, SIA 27-1-SIA 27-12.                                                                        | 3.3 | 41        |
| 18 | Full profile incoherent scatter analysis at Jicamarca. Annales Geophysicae, 2008, 26, 59-75.                                                                                                           | 1.6 | 40        |

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A simulation study of coherent radar imaging. Radio Science, 2000, 35, 1129-1141.                                                                                                                                                         | 1.6  | 39        |
| 20 | Rocket and radar investigation of background electrodynamics and bottom-type scattering layers at<br>the onset of equatorial spread <i>F</i> . Annales Geophysicae, 2006, 24,<br>1387-1400.                                               | 1.6  | 39        |
| 21 | Imaging coherent scatter radar, incoherent scatter radar, and optical observations of quasiperiodic structures associated with sporadicElayers. Journal of Geophysical Research, 2007, 112, n/a-n/a.                                      | 3.3  | 36        |
| 22 | Simulations of plasma clouds in the midlatitudeEregion ionosphere with implications for type I and type II quasiperiodic echoes. Journal of Geophysical Research, 2002, 107, SIA 17-1.                                                    | 3.3  | 32        |
| 23 | Major upwelling and overturning in the mid-latitude F region ionosphere. Nature Communications, 2018, 9, 3326.                                                                                                                            | 12.8 | 32        |
| 24 | High-resolution radar observations of daytime kilometer-scale wave structure in the equatorial electrojet. Journal of Geophysical Research, 1994, 99, 299.                                                                                | 3.3  | 31        |
| 25 | Combined radar observations of equatorial electrojet irregularities at Jicamarca. Annales<br>Geophysicae, 2007, 25, 457-473.                                                                                                              | 1.6  | 31        |
| 26 | SAMI2â€PE: A model of the ionosphere including multistream interhemispheric photoelectron transport. Journal of Geophysical Research, 2012, 117, .                                                                                        | 3.3  | 29        |
| 27 | HF radar observations of decaying artificial field-aligned irregularities. Journal of Geophysical Research, 1996, 101, 26981-26993.                                                                                                       | 3.3  | 28        |
| 28 | Topside measurements at Jicamarca during solar minimum. Annales Geophysicae, 2009, 27, 427-439.                                                                                                                                           | 1.6  | 27        |
| 29 | InferringEregion electron density profiles at Jicamarca from Faraday rotation of coherent scatter.<br>Journal of Geophysical Research, 2001, 106, 30371-30380.                                                                            | 3.3  | 24        |
| 30 | High time and height resolution neutral wind profile measurements across the mesosphere/lower<br>thermosphere region using the Arecibo incoherent scatter radar. Journal of Geophysical Research:<br>Space Physics, 2014, 119, 2345-2358. | 2.4  | 23        |
| 31 | Dataâ€driven numerical simulations of equatorial spread <i>F</i> in the Peruvian sector. Journal of<br>Geophysical Research: Space Physics, 2014, 119, 3815-3827.                                                                         | 2.4  | 22        |
| 32 | High altitude large-scale plasma waves in the equatorial electrojet at twilight. Annales Geophysicae, 2004, 22, 4071-4076.                                                                                                                | 1.6  | 21        |
| 33 | Shear flow effects at the onset of equatorial spreadF. Journal of Geophysical Research, 2006, 111, .                                                                                                                                      | 3.3  | 21        |
| 34 | Comparing <i>F</i> region ionospheric irregularity observations from C/NOFS and Jicamarca.<br>Geophysical Research Letters, 2009, 36, .                                                                                                   | 4.0  | 20        |
| 35 | Equatorial spread <i>F</i> -related currents: Three-dimensional simulations and observations.<br>Geophysical Research Letters, 2011, 38, n/a-n/a.                                                                                         | 4.0  | 20        |
| 36 | Threeâ€dimensional numerical simulations of equatorial spread <i>F</i> : Results and observations in the Pacific sector. Journal of Geophysical Research, 2012, 117, .                                                                    | 3.3  | 20        |

| #  | Article                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Gravity wave effects on postsunset equatorial <i>F</i> region stability. Journal of Geophysical<br>Research: Space Physics, 2014, 119, 5847-5860.                                    | 2.4 | 20        |
| 38 | Electrostatic plasma turbulence in the topside equatorialFregion ionosphere. Journal of Geophysical<br>Research, 2002, 107, SIA 1-1.                                                 | 3.3 | 19        |
| 39 | Inverting ionospheric radio occultation measurements using maximum entropy. Radio Science, 2007, 42, .                                                                               | 1.6 | 19        |
| 40 | Observations of colocated optical and radar aurora. Journal of Geophysical Research, 2006, 111, .                                                                                    | 3.3 | 18        |
| 41 | Dynamic instability in the lower thermosphere inferred from irregular sporadic <i>E</i> layers.<br>Journal of Geophysical Research, 2012, 117, .                                     | 3.3 | 18        |
| 42 | Imaging radar observations of Farley Buneman waves during the JOULE II experiment. Annales<br>Geophysicae, 2008, 26, 1837-1850.                                                      | 1.6 | 17        |
| 43 | Incoherent scatter experiments at Jicamarca using alternating codes. Radio Science, 2000, 35, 1425-1435.                                                                             | 1.6 | 16        |
| 44 | Imaging radar observations and nonlocal theory of large-scale plasma waves in the equatorial electrojet. Annales Geophysicae, 2002, 20, 1167-1179.                                   | 1.6 | 16        |
| 45 | Topside equatorial ionospheric density, temperature, and composition under equinox, low solar flux conditions. Journal of Geophysical Research: Space Physics, 2015, 120, 3899-3912. | 2.4 | 16        |
| 46 | Dataâ€driven numerical simulations of equatorial spread F in the Peruvian sector 3: Solstice. Journal of<br>Geophysical Research: Space Physics, 2015, 120, 10,809.                  | 2.4 | 15        |
| 47 | Polarization of ellipticEregion plasma irregularities and implications for coherent radar backscatter<br>from Farley-Buneman waves. Radio Science, 2006, 41, n/a-n/a.                | 1.6 | 13        |
| 48 | Comparing VHF coherent scatter from the radar aurora with incoherent scatter and allâ€sky auroral<br>imagery. Journal of Geophysical Research, 2012, 117, .                          | 3.3 | 13        |
| 49 | Implications of the equipotential field line approximation for equatorial spread <i>F</i> analysis.<br>Geophysical Research Letters, 2012, 39, .                                     | 4.0 | 13        |
| 50 | A multistatic HF beacon network for ionospheric specification in the Peruvian sector. Radio Science, 2016, 51, 392-401.                                                              | 1.6 | 13        |
| 51 | 30 MHz radar observations of artificial E region field-aligned plasma irregularities. Annales<br>Geophysicae, 2008, 26, 117-129.                                                     | 1.6 | 12        |
| 52 | Sporadic <i>E</i> ionization layers observed with radar imaging and ionospheric modification.<br>Geophysical Research Letters, 2014, 41, 6987-6993.                                  | 4.0 | 12        |
| 53 | Twoâ€Đimensional Maps of In Situ Ionospheric Plasma Flow Data Near Auroral Arcs Using Auroral<br>Imagery. Journal of Geophysical Research: Space Physics, 2019, 124, 3036-3056.      | 2.4 | 12        |
| 54 | Artificial E-region field-aligned plasma irregularities generated at pump frequencies near the second electron gyroharmonic. Annales Geophysicae, 2009, 27, 2711-2720.               | 1.6 | 11        |

| #  | Article                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Excitation threshold and gyroharmonic suppression of artificialEregion field-aligned plasma density<br>irregularities. Radio Science, 2010, 45, n/a-n/a.                               | 1.6 | 11        |
| 56 | Gravity Waveâ€Induced Ionospheric Irregularities in the Postsunset Equatorial Valley Region. Journal of<br>Geophysical Research: Space Physics, 2017, 122, 11,579.                     | 2.4 | 10        |
| 57 | Sensitivity studies of equatorial topside electron and ion temperatures. Journal of Geophysical<br>Research, 2011, 116, n/a-n/a.                                                       | 3.3 | 9         |
| 58 | Dataâ€driven numerical simulations of equatorial spread <i>F</i> in the Peruvian sector: 2. Autumnal equinox. Journal of Geophysical Research: Space Physics, 2014, 119, 6981-6993.    | 2.4 | 9         |
| 59 | First artificial periodic inhomogeneity experiments at HAARP. Geophysical Research Letters, 2015, 42, 1297-1303.                                                                       | 4.0 | 9         |
| 60 | Estimating the electron energy distribution during ionospheric modification from spectrographic airglow measurements. Journal of Geophysical Research, 2012, 117, .                    | 3.3 | 8         |
| 61 | Heaterâ€induced ionization inferred from spectrometric airglow measurements. Journal of Geophysical<br>Research: Space Physics, 2014, 119, 2038-2045.                                  | 2.4 | 8         |
| 62 | Implications of a heuristic model of auroral Farley Buneman waves and heating. Radio Science, 2013,<br>48, 527-534.                                                                    | 1.6 | 7         |
| 63 | lonospheric Specification and Space Weather Forecasting With an HF Beacon Network in the Peruvian<br>Sector. Journal of Geophysical Research: Space Physics, 2018, 123, 6851-6864.     | 2.4 | 7         |
| 64 | Overview of the Rocket Experiment for Neutral Upwelling Sounding Rocket 2 (RENU2). Geophysical<br>Research Letters, 2020, 47, e2018GL081885.                                           | 4.0 | 7         |
| 65 | Radar Investigation of Postsunset Equatorial Ionospheric Instability Over Kwajalein During Project<br>WINDY. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027997. | 2.4 | 7         |
| 66 | Radar observations of thermal plasma oscillations in the ionosphere. Geophysical Research Letters, 2017, 44, 5301-5307.                                                                | 4.0 | 6         |
| 67 | The Case for Combining a Large Lowâ€Band Very High Frequency Transmitter With Multiple Receiving<br>Arrays for Geospace Research: A Geospace Radar. Radio Science, 2019, 54, 533-551.  | 1.6 | 6         |
| 68 | Aperture‣ynthesis Radar Imaging With Compressive Sensing for Ionospheric Research. Radio Science,<br>2019, 54, 503-516.                                                                | 1.6 | 6         |
| 69 | Auroral ionospheric plasma flow extraction using subsonic retarding potential analyzers. Review of Scientific Instruments, 2020, 91, 094503.                                           | 1.3 | 6         |
| 70 | Deep-Learning-Based Occupant Counting by Ambient RF Sensing. IEEE Sensors Journal, 2021, 21, 8564-8574.                                                                                | 4.7 | 6         |
| 71 | A model of secondary Farley-Buneman waves in the auroral electrojet. Journal of Geophysical<br>Research, 2006, 111, .                                                                  | 3.3 | 5         |
| 72 | Improved electron density measurements at Jicamarca. Journal of Geophysical Research, 2007, 112, .                                                                                     | 3.3 | 5         |

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Radar observations of artificial E-region field-aligned irregularities. Annales Geophysicae, 2009, 27, 2699-2710.                                                                                             | 1.6 | 5         |
| 74 | Sources of variability in equatorial topside ionospheric and plasmaspheric temperatures. Journal of<br>Atmospheric and Solar-Terrestrial Physics, 2013, 103, 83-93.                                           | 1.6 | 5         |
| 75 | Indoor Object Sensing Using Radio-Frequency Identification With Inverse Methods. IEEE Sensors<br>Journal, 2022, 22, 11336-11344.                                                                              | 4.7 | 5         |
| 76 | Highâ€altitude incoherentâ€scatter measurements at Jicamarca. Journal of Geophysical Research: Space<br>Physics, 2017, 122, 2292-2299.                                                                        | 2.4 | 4         |
| 77 | Transient Ionospheric Upflow Driven by Poleward Moving Auroral forms Observed During the Rocket<br>Experiment for Neutral Upwelling 2 (RENU2) Campaign. Geophysical Research Letters, 2019, 46,<br>6297-6305. | 4.0 | 4         |
| 78 | VHF Imaging Radar Observations and Theory of Banded Midlatitude Sporadic <i>E</i> Ionization Layers.<br>Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029257.                             | 2.4 | 4         |
| 79 | Hybrid Plasma Simulations of Farleyâ€Buneman Instabilities in the Auroral Eâ€Region. Journal of<br>Geophysical Research: Space Physics, 2021, 126, e2020JA028379.                                             | 2.4 | 4         |
| 80 | Topside measurements at Jicamarca during the 2019 ―2020 deep solar minimum. Journal of Geophysical<br>Research: Space Physics, 2021, 126, e2021JA029695.                                                      | 2.4 | 4         |
| 81 | Improved spectral estimation of equatorial spread <i>F</i> through aperiodic pulsing and Bayesian inversion. Radio Science, 2008, 43, .                                                                       | 1.6 | 3         |
| 82 | Xâ€mode suppression of artificial <i>E</i> region fieldâ€aligned plasma density irregularities. Radio<br>Science, 2011, 46, .                                                                                 | 1.6 | 3         |
| 83 | Magnetic aspect sensitivity of 3-m <i>F</i> -region field-aligned plasma density irregularities over<br>Jicamarca. Journal of Geophysical Research, 2011, 116, n/a-n/a.                                       | 3.3 | 3         |
| 84 | Phase speed saturation of Farleyâ€Buneman waves due to stochastic, selfâ€induced fluctuations in the<br>background flow. Journal of Geophysical Research: Space Physics, 2016, 121, 5785-5793.                | 2.4 | 3         |
| 85 | Assessing Ionospheric Convection Estimates From Coherent Scatter From the Radio Aurora. Radio Science, 2018, 53, 1481-1491.                                                                                   | 1.6 | 3         |
| 86 | Radio Beacon and Radar Assessment and Forecasting ofÂEquatorial F Region Ionospheric Stability.<br>Journal of Geophysical Research: Space Physics, 2019, 124, 9511-9524.                                      | 2.4 | 3         |
| 87 | High Altitude Echoes From the Equatorial Topside Ionosphere During Solar Minimum. Journal of<br>Geophysical Research: Space Physics, 2021, 126, e2020JA028424.                                                | 2.4 | 3         |
| 88 | Examining the Auroral Ionosphere in Three Dimensions Using Reconstructed 2D Maps of Auroral Data<br>to Drive the 3D GEMINI Model. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029749.   | 2.4 | 3         |
| 89 | On the theory of the incoherent scatter gyrolines. Radio Science, 2017, 52, 723-730.                                                                                                                          | 1.6 | 2         |
| 90 | Navigation and ionosphere characterization using highâ€frequency signals: Models and solution concepts. Navigation, Journal of the Institute of Navigation, 2021, 68, 353-367.                                | 2.8 | 2         |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Reexamining <b><i>X</i></b> â€mode suppression and fine structure in artificial <b><i>E</i></b> region fieldâ€aligned plasma density irregularities. Radio Science, 2013, 48, 482-490.                                             | 1.6 | 1         |
| 92 | VHF Radar Images of Artificial Fieldâ€Aligned Ionospheric Irregularities in the Subauroral <i>E</i> Region. Radio Science, 2018, 53, 334-343.                                                                                      | 1.6 | 1         |
| 93 | Investigating Transport and Dissipation in the Subauroral E Region With Ionospheric Modification Experiments and Very High Frequency Radar Backscatter. Radio Science, 2019, 54, 245-253.                                          | 1.6 | 1         |
| 94 | Anomalous Electron Temperature Increases in the Evening Equatorial Ionosphere. Journal of<br>Geophysical Research: Space Physics, 2021, 126, e2020JA028728.                                                                        | 2.4 | 1         |
| 95 | Mapping Irregularities in the Postsunset Equatorial Ionosphere With an Expanded Network of HF<br>Beacons. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029229.                                                | 2.4 | 1         |
| 96 | Observations of sunlit<br>N <sub>2</sub> <sup>+</sup> aurora at high<br>altitudes during the RENU2 flight. Annales Geophysicae, 2021, 39, 849-859.                                                                                 | 1.6 | 1         |
| 97 | Planned Science and Scientific Discovery in Equatorial Aeronomy. Frontiers in Astronomy and Space Sciences, 2022, 9, .                                                                                                             | 2.8 | 1         |
| 98 | Equatorial F â€Region Plasma Waves and Instabilities Observed Near Midnight at Solar Minimum During<br>the NASA Too WINDY Sounding Rocket Experiment. Journal of Geophysical Research: Space Physics,<br>2020, 125, e2020JA028408. | 2.4 | 0         |
| 99 | Fluid simulation of the Farleyâ $\in$ Buneman instability. , 2022, , .                                                                                                                                                             |     | 0         |