Charles Plessy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1154012/publications.pdf Version: 2024-02-01

CHADLES DIESSY

#	Article	IF	CITATIONS
1	Automated phenol-chloroform extraction of high molecular weight genomic DNA for use in long-read single-molecule sequencing. F1000Research, 2022, 11, 240.	1.6	4
2	Multiâ€omics analysis of hiPSCsâ€derived HLCs matured onâ€chip revealed patterns typical of liver regeneration. Biotechnology and Bioengineering, 2021, 118, 3716-3732.	3.3	7
3	Telomere-to-telomere assembly of the genome of an individual Oikopleura dioica from Okinawa using Nanopore-based sequencing. BMC Genomics, 2021, 22, 222.	2.8	18
4	Decoding Neuronal Diversification by Multiplexed Single-cell RNA-Seq. Stem Cell Reports, 2021, 16, 810-824.	4.8	8
5	Investigation of the hepatic development in the coculture of hiPSCs-derived LSECs and HLCs in a fluidic microenvironment. APL Bioengineering, 2021, 5, 026104.	6.2	8
6	A genome database for a Japanese population of the larvacean Oikopleura dioica. Development Growth and Differentiation, 2020, 62, 450-461.	1.5	13
7	Use of Cap Analysis Gene Expression to detect human papillomavirus promoter activity patterns at different disease stages. Scientific Reports, 2020, 10, 17991.	3.3	1
8	Characterization of liver zonationâ€like transcriptomic patterns in <scp>HLCs</scp> derived from <scp>hiPSCs</scp> in a microfluidic biochip environment. Biotechnology Progress, 2020, 36, e3013.	2.6	13
9	Analysis of hiPSCs differentiation toward hepatocyte-like cells upon extended exposition to oncostatin. Differentiation, 2020, 114, 36-48.	1.9	11
10	Machine-driven parameter screen of biochemical reactions. Nucleic Acids Research, 2020, 48, e37-e37.	14.5	0
11	RADICL-seq identifies general and cell type–specific principles of genome-wide RNA-chromatin interactions. Nature Communications, 2020, 11, 1018.	12.8	98
12	Integration of metabolomic and transcriptomic profiles of hiPSCs-derived hepatocytes in a microfluidic environment. Biochemical Engineering Journal, 2020, 155, 107490.	3.6	5
13	Transcriptome profiling of hiPSC-derived LSECs with nanoCAGE. Molecular Omics, 2020, 16, 138-146.	2.8	11
14	H3S28PÂAntibody StainingÂof OkinawanÂOikopleura dioicaÂSuggests the Presence of Three Chromosomes. F1000Research, 2020, 9, 780.	1.6	2
15	Centromere-specific antibody-mediated karyotyping of Okinawan Oikopleura dioicaÂsuggests the presence of three chromosomes. F1000Research, 2020, 9, 780.	1.6	2
16	C1 CAGE detects transcription start sites and enhancer activity at single-cell resolution. Nature Communications, 2019, 10, 360.	12.8	102
17	Optimized protocol for the hepatic differentiation of induced pluripotent stem cells in a fluidic microenvironment. Biotechnology and Bioengineering, 2019, 116, 1762-1776.	3.3	27
18	Analysis of the transcription factors and their regulatory roles during a step-by-step differentiation of induced pluripotent stem cells into hepatocyte-like cells. Molecular Omics, 2019, 15, 383-398.	2.8	11

CHARLES PLESSY

#	Article	IF	CITATIONS
19	Profiling of derived-hepatocyte progenitors from induced pluripotent stem cells using nanoCAGE promoter analysis. Biochemical Engineering Journal, 2019, 142, 7-17.	3.6	9
20	Widespread use of the "ascidian―mitochondrial genetic code in tunicates. F1000Research, 2019, 8, 2072.	1.6	3
21	Widespread use of the "ascidian―mitochondrial genetic code in tunicates. F1000Research, 2019, 8, 2072.	1.6	2
22	SCPortalen: human and mouse single-cell centric database. Nucleic Acids Research, 2018, 46, D781-D787.	14.5	48
23	NanoCAGE: A Method for the Analysis of Coding and Noncoding 5′-Capped Transcriptomes. Methods in Molecular Biology, 2017, 1543, 57-109.	0.9	29
24	Linking FANTOM5 CAGE peaks to annotations with CAGEscan. Scientific Data, 2017, 4, 170147.	5.3	29
25	Targeted reduction of highly abundant transcripts using pseudo-random primers. BioTechniques, 2016, 60, 169-174.	1.8	27
26	Characterization of Novel Transcripts of Human Papillomavirus Type 16 Using Cap Analysis Gene Expression Technology. Journal of Virology, 2015, 89, 2448-2452.	3.4	6
27	NanoCAGE analysis of the mouse olfactory epithelium identifies the expression of vomeronasal receptors and of proximal LINE elements. Frontiers in Cellular Neuroscience, 2014, 8, 41.	3.7	11
28	Digital expression profiling of the compartmentalized translatome of Purkinje neurons. Genome Research, 2014, 24, 1396-1410.	5.5	49
29	Mesencephalic dopaminergic neurons express a repertoire of olfactory receptors and respond to odorant-like molecules. BMC Genomics, 2014, 15, 729.	2.8	46
30	A promoter-level mammalian expression atlas. Nature, 2014, 507, 462-470.	27.8	1,838
31	Two independent transcription initiation codes overlap on vertebrate core promoters. Nature, 2014, 507, 381-385.	27.8	182
32	Multiplicity of 5′ Cap Structures Present on Short RNAs. PLoS ONE, 2014, 9, e102895.	2.5	29
33	Comparison of RNA- or LNA-hybrid oligonucleotides in template-switching reactions for high-speed sequencing library preparation. BMC Genomics, 2013, 14, 665.	2.8	23
34	Population transcriptomics with singleâ€cell resolution: A new field made possible by microfluidics. BioEssays, 2013, 35, 131-140.	2.5	20
35	High-fidelity promoter profiling reveals widespread alternative promoter usage and transposon-driven developmental gene expression. Genome Research, 2013, 23, 169-180.	5.5	176
36	Suppression of artifacts and barcode bias in high-throughput transcriptome analyses utilizing template switching. Nucleic Acids Research, 2013, 41, e44-e44.	14.5	65

CHARLES PLESSY

#	Article	IF	CITATIONS
37	Promoter architecture of mouse olfactory receptor genes. Genome Research, 2012, 22, 486-497.	5.5	52
38	NanoCAGE: A High-Resolution Technique to Discover and Interrogate Cell Transcriptomes. Cold Spring Harbor Protocols, 2011, 2011, pdb.prot5559-pdb.prot5559.	0.3	61
39	Community-driven computational biology with Debian Linux. BMC Bioinformatics, 2010, 11, S5.	2.6	42
40	Linking promoters to functional transcripts in small samples with nanoCAGE and CAGEscan. Nature Methods, 2010, 7, 528-534.	19.0	152
41	The genome sequence of the spontaneously hypertensive rat: Analysis and functional significance. Genome Research, 2010, 20, 791-803.	5.5	84
42	High-throughput verification of transcriptional starting sites by Deep-RACE. BioTechniques, 2009, 46, 130-132.	1.8	33
43	Tunable fractionation of nucleic acids. BioTechniques, 2009, 47, 1041-1043.	1.8	4
44	The regulated retrotransposon transcriptome of mammalian cells. Nature Genetics, 2009, 41, 563-571.	21.4	731
45	The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nature Genetics, 2009, 41, 553-562.	21.4	408
46	Unexpected expression of α- and β-globin in mesencephalic dopaminergic neurons and glial cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15454-15459.	7.1	240
47	A Resource for Transcriptomic Analysis in the Mouse Brain. PLoS ONE, 2008, 3, e3012.	2.5	11
48	Genome-wide analysis of mammalian promoter architecture and evolution. Nature Genetics, 2006, 38, 626-635.	21.4	1,201
49	The complexity of the mammalian transcriptome. Journal of Physiology, 2006, 575, 321-332.	2.9	91
50	Enhancer sequence conservation between vertebrates is favoured in developmental regulator genes. Trends in Genetics, 2005, 21, 207-210.	6.7	59
51	The Transcriptional Landscape of the Mammalian Genome. Science, 2005, 309, 1559-1563.	12.6	3,227
52	Expression Profiling and Comparative Genomics Identify a Conserved Regulatory Region Controlling Midline Expression in the Zebrafish Embryo. Genome Research, 2004, 14, 228-238.	5.5	34
53	Conserved and acquired features of neurogenin1 regulation. Development (Cambridge), 2004, 131, 5627-5637.	2.5	59
54	Her5 acts as a prepattern factor that blocks neurogenin1 and coe2 expression upstream of Notch to inhibit neurogenesis at the midbrain-hindbrain boundary. Development (Cambridge), 2004, 131, 1993-2006.	2.5	64

#	Article	IF	CITATIONS
55	Multiple regulatory elements with spatially and temporally distinct activities control neurogenin1 expression in primary neurons of the zebrafish embryo. Mechanisms of Development, 2003, 120, 211-218.	1.7	163
56	Precocious Expression of the Glide/Gcm Glial-Promoting Factor in Drosophila Induces Neurogenesis. Genetics, 2002, 160, 1095-1106.	2.9	9
57	Expression of brain subtype creatine kinase in the zebrafish embryo. Mechanisms of Development, 2001, 109, 409-412.	1.7	21