Thomas B Lynch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11538761/publications.pdf Version: 2024-02-01

THOMAS R LVNCH

#	Article	IF	CITATIONS
1	Stand-Age Derived Competition Indices Influence Individual Tree Mortality Model Prediction for Naturally Occurring Even-Aged Shortleaf Pine Stands. Forests, 2022, 13, 314.	2.1	0
2	A note on the estimation of variance for big BAF sampling. Forest Ecosystems, 2020, 7, .	3.1	5
3	An Annual basal area growth model with multiplicative climate modifier fitted to longitudinal data for shortleaf pine. Forestry, 2019, 92, 538-553.	2.3	3
4	Additive biomass equations for slash pine trees: comparing three modeling approaches. Canadian Journal of Forest Research, 2019, 49, 27-40.	1.7	33
5	Compatibility, Development, and Estimation of Taper and Volume Equation Systems. Forest Science, 2019, 65, 1-13.	1.0	18
6	Use of Stereology in Forest Inventories—A Brief History and Prospects for the Future. Forests, 2018, 9, 251.	2.1	2
7	Design-Unbiased Estimation and Alternatives for Sampling Trees on Plantation Rows. Forests, 2018, 9, 362.	2.1	3
8	Optimal sample size and plot size or point sampling factor based on cost-plus-loss using the Fairfield Smith relationship for plot size. Forestry, 2017, 90, 697-709.	2.3	10
9	Deriving compatible taper functions from volume ratio equations based on upper-stem height. Canadian Journal of Forest Research, 2017, 47, 1424-1431.	1.7	10
10	Plantation Site Index Comparisons for Shortleaf Pine and Loblolly Pine in Oklahoma, USA. Forest Science, 2016, 62, 546-552.	1.0	6
11	Using quadratic mean diameter and relative spacing index to enhance height–diameter and crown ratio models fitted to longitudinal data. Forestry, 2016, 89, 215-229.	2.3	47
12	Winter in the Ouchitas—A severe winter storm signature in Pinus echinata in the Ouachita Mountains of Oklahoma and Arkansas, USA. Dendrochronologia, 2016, 37, 107-115.	2.2	2
13	Comparison of Loblolly, Shortleaf, and Pitch X Loblolly Pine Plantations Growing in Oklahoma. Forest Science, 2015, 61, 540-547.	1.0	18
14	Effects of measurement error on Monte Carlo integration estimators of tree volume: sample diameters measured at random upper-stem heights. Canadian Journal of Forest Research, 2015, 45, 471-479.	1.7	3
15	Effects of measurement error on Monte Carlo integration estimators of tree volume: critical height sampling and vertical Monte Carlo methods. Canadian Journal of Forest Research, 2015, 45, 463-470.	1.7	5
16	The unbiasedness of a generalized mirage boundary correction method for Monte Carlo integration estimators of volume. Canadian Journal of Forest Research, 2014, 44, 810-819.	1.7	1
17	Use of an Antithetic Variate for Better Location of Upper-Stem Height Measurements with Critical Height and Importance Sampling in Horizontal Line Sampling. Forest Science, 2014, 60, 288-297.	1.0	2
18	An antithetic variate to facilitate upper-stem height measurements for critical height sampling with importance sampling. Canadian Journal of Forest Research, 2013, 43, 1151-1161.	1.7	7

THOMAS B LYNCH

#	Article	IF	CITATIONS
19	A mirage boundary correction method for distance sampling. Canadian Journal of Forest Research, 2012, 42, 272-278.	1.7	9
20	Relationships between Height, Diameter, and Crown for Eastern Cottonwood (<i>Populus) Tj ETQq0 0 0 rgBT 176-186.</i>	/Overlock 1 0.5	0 Tf 50 707 To 7
21	On Moments of Inertia for Logs and Tree Segments. Forest Science, 2012, 58, 399-404.	1.0	ο
22	Growth projection and valuation of restoration of the shortleaf pine–bluestem grass ecosystem. Forest Policy and Economics, 2012, 20, 10-15.	3.4	4
23	Long-term directional changes in upland <i>Quercus</i> forests throughout Oklahoma, USA. Journal of Vegetation Science, 2010, 21, 606-618.	2.2	42
24	Effect of Thinning on Aboveground Biomass Accumulation and Distribution in Naturally Regenerated Shortleaf Pine. Southern Journal of Applied Forestry, 2009, 33, 188-192.	0.3	4
25	Nonlinear mixed modeling of basal area growth for shortleaf pine. Forest Ecology and Management, 2008, 255, 3440-3446.	3.2	23
26	A Mixed-Effects Model for the dbh–Height Relationship of Shortleaf Pine (Pinus echinata Mill.). Southern Journal of Applied Forestry, 2008, 32, 5-11.	0.3	15
27	Tree Biomass Equations for Naturally Regenerated Shortleaf Pine. Southern Journal of Applied Forestry, 2008, 32, 163-167.	0.3	6
28	A Random-Parameter Height-Dbh Model for Cherrybark Oak. Southern Journal of Applied Forestry, 2005, 29, 22-26.	0.3	31
29	Productivity, crown architecture, and gas exchange of North Carolina and Oklahoma/Arkansas loblolly pine families growing on a droughty site in southeastern Oklahoma. Forest Ecology and Management, 2004, 194, 83-94.	3.2	8
30	n-Tree distance sampling for per-tree estimates with application to unequal-sized cluster sampling of increment core data. Canadian Journal of Forest Research, 2003, 33, 1189-1195.	1.7	15
31	Comparison of branch biomass relationships for North Carolina and Oklahoma/Arkansas loblolly pine seed sources growing in southeastern Oklahoma. Forest Ecology and Management, 2002, 159, 241-248.	3.2	8
32	Estimating parameters for tree basal area growth with a system of equations and seemingly unrelated regressions. Forest Ecology and Management, 2001, 148, 51-61.	3.2	18
33	An Individual-Tree Growth and Yield Prediction System for Uneven-Aged Shortleaf Pine Stands. Southern Journal of Applied Forestry, 2000, 24, 112-120.	0.3	7
34	An Individual-Tree Growth and Yield Prediction System for Even-Aged Natural Shortleaf Pine Forests. Southern Journal of Applied Forestry, 1999, 23, 203-211.	0.3	21
35	Distance sampling for forest inventory in Indonesian teak plantations. Forest Ecology and Management, 1999, 113, 215-221.	3.2	34
36	A Compatible Height Prediction and Projection System for Individual Trees in Natural, Even-Aged Shortleaf Pine Stands. Forest Science, 1995, 41, 194-209.	1.0	25

THOMAS B LYNCH

#	Article	IF	CITATIONS
37	Variance reduction in Ueno's method and cylinder sampling for forest volume estimation. Canadian Journal of Forest Research, 1995, 25, 1783-1794.	1.7	3
38	Comparison of log volume estimates using formulae for log center of gravity and center of volume. Canadian Journal of Forest Research, 1994, 24, 133-138.	1.7	5
39	Estimation of individual tree volume by importance sampling and antithetic variates from the cylindrical shells integral. Canadian Journal of Forest Research, 1992, 22, 326-335.	1.7	10
40	Basal Area and Volume Development of Natural Even-Aged Shortleaf Pine Stands in the Ouachita Mountains. Southern Journal of Applied Forestry, 1992, 16, 30-34.	0.3	7
41	Stand volume estimation from tree counts in the context of vertical line sampling. Canadian Journal of Forest Research, 1990, 20, 274-279.	1.7	2
42	Additional Biomass Estimation Alternatives: Nonlinear Two- and Three-Stage Least Squares and Full Information Maximum Likelihood for Slash Pine. Canadian Journal of Forest Research, 0, , .	1.7	1