
Sha Tao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11538387/publications.pdf Version: 2024-02-01

SHA TAO

#	Article	IF	CITATIONS
1	Early-stage effects of residual charges in a metal target on emitted electrons induced by femtosecond laser–metal interactions. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 404-407.	2.1	4
2	Amplification of Plasma at Different Initial Temperatures inside a Microhole by a Short Laser Pulse and the Effect on the Hole Sidewall. Procedia Manufacturing, 2016, 5, 724-733.	1.9	0
3	Modeling of picosecond laser-induced plasma amplification inside a microhole and an implied novel technology to drill microholes with varying diameters with depth. Manufacturing Letters, 2016, 7, 1-5.	2.2	2
4	The effect of emitted electrons during femtosecond laser–metal interactions: A physical explanation for coulomb explosion in metals. Applied Surface Science, 2014, 298, 90-94.	6.1	13
5	Nanosecond laser pulse interactions with breakdown plasma in gas medium confined in a microhole. Applied Physics B: Lasers and Optics, 2013, 113, 251-258.	2.2	12
6	The Interactions of Microhole Sidewall With Plasma induced by Femtosecond Laser Ablation in High-Aspect-Ratio Microholes. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2012, 134, .	2.2	5
7	Infrared long nanosecond laser pulse ablation of silicon: Integrated two-dimensional modeling and time-resolved experimental study. Applied Surface Science, 2012, 258, 7766-7773.	6.1	45
8	A comparative study of the interaction between microhole sidewall and the plasma generated by nanosecond and femtosecond laser ablation of deep microholes. Journal of Manufacturing Processes, 2012, 14, 233-242.	5.9	10
9	Study of laser beam propagation in microholes and the effect on femtosecond laser micromachining. Journal of Applied Physics, 2011, 109, 123506.	2.5	9
10	Physical mechanism of silicon ablation with long nanosecond laser pulses at 1064nm through time-resolved observation. Applied Surface Science, 2011, 257, 2886-2890.	6.1	40
11	Backward growth of plasma induced by long nanosecond laser pulse ablation. Applied Physics Letters, 2011, 99, 051106.	3.3	20
12	Numerical modeling of laser shock peening with femtosecond laser pulses and comparisons to experiments. Applied Surface Science, 2010, 256, 4376-4382.	6.1	43
13	Thermal modeling and experimental study of infrared nanosecond laser ablation of silicon. Journal of Applied Physics, 2009, 106, .	2.5	30
14	INFRARED NANOSECOND LASER ABLATION OF SILICON: THE SPATIAL MULTI-PULSE ENHANCEMENT EFFECT AND ITS DEPENDENCE ON LASER PULSE DURATION – TECHNICAL COMMUNICATION. Machining Science and Technology, 2009, 13, 427-436.	2.5	0