

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1153822/publications.pdf Version: 2024-02-01

7нио

#	Article	IF	CITATIONS
1	Atrial Fibrillation Begets Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 2008, 1, 184-192.	4.8	170
2	Lowâ€Level Vagosympathetic Nerve Stimulation Inhibits Atrial Fibrillation Inducibility: Direct Evidence by Neural Recordings from Intrinsic Cardiac Ganglia. Journal of Cardiovascular Electrophysiology, 2011, 22, 455-463.	1.7	117
3	Low-Level Tragus Stimulation for the Treatment of Ischemia and Reperfusion Injury in Patients With ST-Segment Elevation Myocardial Infarction. JACC: Cardiovascular Interventions, 2017, 10, 1511-1520.	2.9	108
4	Chronic Intermittent Low-Level Transcutaneous Electrical Stimulation of Auricular Branch of Vagus Nerve Improves Left Ventricular Remodeling in Conscious Dogs With Healed Myocardial Infarction. Circulation: Heart Failure, 2014, 7, 1014-1021.	3.9	105
5	Interactions between atrial electrical remodeling and autonomic remodeling: How to break the vicious cycle. Heart Rhythm, 2012, 9, 804-809.	0.7	100
6	A potential relationship between gut microbes and atrial fibrillation: Trimethylamine N-oxide, a gut microbe-derived metabolite, facilitates the progression of atrial fibrillation. International Journal of Cardiology, 2018, 255, 92-98.	1.7	85
7	Optogenetic Modulation of CardiacÂSympathetic Nerve Activity toÂPrevent VentricularÂArrhythmias. Journal of the American College of Cardiology, 2017, 70, 2778-2790.	2.8	75
8	Spinal cord stimulation protects against ventricular arrhythmias by suppressing left stellate ganglion neural activity in an acute myocardial infarction canine model. Heart Rhythm, 2015, 12, 1628-1635.	0.7	68
9	Effects of ganglionated plexi ablation on ventricular electrophysiological properties in normal hearts and after acute myocardial ischemia. International Journal of Cardiology, 2013, 168, 86-93.	1.7	63
10	Low‣evel Vagus Nerve Stimulation Attenuates Myocardial Ischemic Reperfusion Injury by Antioxidative Stress and Antiapoptosis Reactions in Canines. Journal of Cardiovascular Electrophysiology, 2016, 27, 224-231.	1.7	52
11	Left Renal Nerves Stimulation Facilitates Ischemiaâ€Induced Ventricular Arrhythmia by Increasing Nerve Activity of Left Stellate Ganglion. Journal of Cardiovascular Electrophysiology, 2014, 25, 1249-1256.	1.7	51
12	Complete Blood Count Reference Intervals for Healthy Han Chinese Adults. PLoS ONE, 2015, 10, e0119669.	2.5	50
13	Renal sympathetic denervation modulates ventricular electrophysiology and has a protective effect on ischaemiaâ€induced ventricular arrhythmia. Experimental Physiology, 2014, 99, 1467-1477.	2.0	48
14	Chronic Intermittent Low-Level Stimulation of Tragus Reduces CardiacÂAutonomic Remodeling and Ventricular Arrhythmia Inducibility inÂaÂPost-Infarction Canine Model. JACC: Clinical Electrophysiology, 2016, 2, 330-339.	3.2	46
15	Increased inflammation promotes ventricular arrhythmia through aggravating left stellate ganglion remodeling in a canine ischemia model. International Journal of Cardiology, 2017, 248, 286-293.	1.7	45
16	Overexpression of miR-142-3p improves mitochondrial function in cardiac hypertrophy. Biomedicine and Pharmacotherapy, 2018, 108, 1347-1356.	5.6	43
17	Radioprotective 105 kDa protein attenuates ischemia/reperfusion-induced myocardial apoptosis and autophagy by inhibiting the activation of the TLR4/NF-κB signaling pathway in rats. International Journal of Molecular Medicine, 2016, 38, 885-893.	4.0	41
18	Atrial Fibrillation in Acute Obstructive Sleep Apnea: Autonomic Nervous Mechanism and Modulation. Journal of the American Heart Association, 2017, 6, .	3.7	40

#	Article	IF	CITATIONS
19	The right side or left side of noninvasive transcutaneous vagus nerve stimulation: Based on conventional wisdom or scientific evidence?. International Journal of Cardiology, 2015, 187, 44-45.	1.7	38
20	Spinal cord stimulation suppresses atrial fibrillation by inhibiting autonomic remodeling. Heart Rhythm, 2016, 13, 274-281.	0.7	36
21	Autonomic involvement in idiopathic premature ventricular contractions. Clinical Research in Cardiology, 2013, 102, 361-370.	3.3	34
22	Precise Modulation of Gold Nanorods for Protecting against Malignant Ventricular Arrhythmias via Nearâ€Infrared Neuromodulation. Advanced Functional Materials, 2019, 29, 1902128.	14.9	31
23	Warfarin Dosage Response Related Pharmacogenetics in Chinese Population. PLoS ONE, 2015, 10, e0116463.	2.5	28
24	Low level tragus nerve stimulation is a non-invasive approach for anti-atrial fibrillation via preventing the loss of connexins. International Journal of Cardiology, 2015, 179, 144-145.	1.7	27
25	Low-level Transcutaneous Electrical Stimulation of the Auricular Branch of Vagus Nerve Ameliorates Left Ventricular Remodeling and Dysfunction by Downregulation of Matrix Metalloproteinase 9 and Transforming Growth Factor 121. Journal of Cardiovascular Pharmacology, 2015, 65, 342-348.	1.9	26
26	Evaluation of an automated light transmission aggregometry. Platelets, 2017, 28, 712-719.	2.3	26
27	Transcutaneous electrical stimulation of auricular branch of vagus nerve: A noninvasive therapeutic approach for post-ischemic heart failure. International Journal of Cardiology, 2014, 177, 676-677.	1.7	25
28	Autonomic Modulation by Electrical Stimulation of the Parasympathetic Nervous System: An Emerging Intervention for Cardiovascular Diseases. Cardiovascular Therapeutics, 2016, 34, 167-171.	2.5	25
29	Noninvasive low-frequency electromagnetic stimulation of the left stellate ganglion reduces myocardial infarction-induced ventricular arrhythmia. Scientific Reports, 2016, 6, 30783.	3.3	25
30	Gut microbe-derived metabolite trimethylamine N-oxide activates the cardiac autonomic nervous system and facilitates ischemia-induced ventricular arrhythmia via two different pathways. EBioMedicine, 2019, 44, 656-664.	6.1	25
31	Carotid Baroreceptor Stimulation Prevents Arrhythmias Induced by Acute Myocardial Infarction Through Autonomic Modulation. Journal of Cardiovascular Pharmacology, 2014, 64, 431-437.	1.9	23
32	Impacts of Renal Sympathetic Activation on Atrial Fibrillation: The Potential Role of the Autonomic Cross Talk Between Kidney and Heart. Journal of the American Heart Association, 2017, 6, .	3.7	23
33	Leptin injection into the left stellate ganglion augments ischemia-related ventricular arrhythmias via sympathetic nerve activation. Heart Rhythm, 2018, 15, 597-606.	0.7	23
34	Low-Level Carotid Baroreceptor Stimulation Suppresses Ventricular Arrhythmias during Acute Ischemia. PLoS ONE, 2014, 9, e109313.	2.5	22
35	Low-Level Baroreceptor Stimulation Suppresses Atrial Fibrillation by Inhibiting Ganglionated Plexus Activity. Canadian Journal of Cardiology, 2015, 31, 767-774.	1.7	21
36	Influence of SCARB1 gene SNPs on serum lipid levels and susceptibility to coronary heart disease and cerebral infarction in a Chinese population. Gene, 2017, 626, 319-325.	2.2	20

#	Article	IF	CITATIONS
37	Renal sympathetic stimulation and ablation affect ventricular arrhythmia by modulating autonomic activity in a cesium-induced long QT canine model. Heart Rhythm, 2017, 14, 912-919.	0.7	19
38	Autonomic Neuromodulation for Preventing and Treating Ventricular Arrhythmias. Frontiers in Physiology, 2019, 10, 200.	2.8	18
39	Sympathetic Nervous System Mediates Cardiac Remodeling After Myocardial Infarction in a Circadian Disruption Model. Frontiers in Cardiovascular Medicine, 2021, 8, 668387.	2.4	18
40	Trimethylamine/Trimethylamine-N-Oxide as a Key Between Diet and Cardiovascular Diseases. Cardiovascular Toxicology, 2021, 21, 593-604.	2.7	18
41	Oral Supplementation With Butyrate Improves Myocardial Ischemia/Reperfusion Injury via a Gut-Brain Neural Circuit. Frontiers in Cardiovascular Medicine, 2021, 8, 718674.	2.4	17
42	The Use of Noninvasive Vagal Nerve Stimulation to Inhibit Sympathetically Induced Sinus Node Acceleration: A Potential Therapeutic Approach for Inappropriate Sinus Tachycardia. Journal of Cardiovascular Electrophysiology, 2016, 27, 217-223.	1.7	16
43	The role of low-level vagus nerve stimulation in cardiac therapy. Expert Review of Medical Devices, 2019, 16, 675-682.	2.8	16
44	Low-level vagus nerve stimulation: An important therapeutic option for atrial fibrillation treatment via modulating cardiac autonomic tone. International Journal of Cardiology, 2015, 199, 437-438.	1.7	15
45	Vagus nerve stimulation protects against acute liver injury induced by renal ischemia reperfusion via antioxidant stress and anti-inflammation. Biomedicine and Pharmacotherapy, 2019, 117, 109062.	5.6	15
46	Metabolism regulator adiponectin prevents cardiac remodeling and ventricular arrhythmias via sympathetic modulation in a myocardial infarction model. Basic Research in Cardiology, 2022, 117, .	5.9	15
47	Spinal Cord Stimulation Suppresses Focal Rapid Firing–induced Atrial Fibrillation by Inhibiting Atrial Ganglionated Plexus Activity. Journal of Cardiovascular Pharmacology, 2014, 64, 554-559.	1.9	14
48	Security and cost comparison of INR self-testing and conventional hospital INR testing in patients with mechanical heart valve replacement. Journal of Cardiothoracic Surgery, 2015, 10, 4.	1.1	14
49	Blocking the Nav1.8 channel in the left stellate ganglion suppresses ventricular arrhythmia induced by acute ischemia in a canine model. Scientific Reports, 2017, 7, 534.	3.3	14
50	Interactions between metabolism regulator adiponectin and intrinsic cardiac autonomic nervous system: A potential treatment target for atrial fibrillation. International Journal of Cardiology, 2020, 302, 59-66.	1.7	14
51	Low level non-invasive vagus nerve stimulation: A novel feasible therapeutic approach for atrial fibrillation. International Journal of Cardiology, 2015, 182, 189-190.	1.7	13
52	Renal sympathetic denervation for treatment of ventricular arrhythmias: a review on current experimental and clinical findings. Clinical Research in Cardiology, 2015, 104, 535-543.	3.3	12
53	Mesenchymal Stem Cell–Platelet Aggregates Increased in the Peripheral Blood of Patients with Acute Myocardial Infarction and Might Depend on the Stromal Cell-Derived Factor 1/CXCR4 Axis. Stem Cells and Development, 2019, 28, 1607-1619.	2.1	12
54	Sympathetic denervation of heart and kidney induces similar effects on ventricular electrophysiological properties. EuroIntervention, 2015, 11, 598-604.	3.2	12

#	Article	IF	CITATIONS
55	Light-emitting diode therapy protects against ventricular arrhythmias by neuro-immune modulation in myocardial ischemia and reperfusion rat model. Journal of Neuroinflammation, 2019, 16, 139.	7.2	11
56	MG53 protein: A promising novel therapeutic target for myocardial ischemia reperfusion injury. International Journal of Cardiology, 2015, 199, 424-425.	1.7	10
57	Expression of CXCR4 on T-cell subsets and Plasma IL-17 Concentrations in Patients with Aplastic Anaemia. Scientific Reports, 2017, 7, 9075.	3.3	10
58	Noninvasive vagal nerve stimulation for heart failure: Was it practical or just a stunt?. International Journal of Cardiology, 2015, 187, 637-638.	1.7	9
59	The effects of interleukin 17A on left stellate ganglion remodeling are mediated by neuroimmune communication in normal structural hearts. International Journal of Cardiology, 2019, 279, 64-71.	1.7	9
60	Klotho protein: A potential therapeutic agent during myocardial ischemia and reperfusion. International Journal of Cardiology, 2015, 191, 227-228.	1.7	8
61	Interleukin-17 inhibition: An important target for attenuating myocardial ischemia and reperfusion injury. International Journal of Cardiology, 2015, 198, 89-90.	1.7	8
62	Unilateral low-level transcutaneous electrical vagus nerve stimulation: A novel noninvasive treatment for myocardial infarction. International Journal of Cardiology, 2015, 190, 9-10.	1.7	8
63	Mast cells modulate the pathogenesis of leptin-induced left stellate ganglion activation in canines. International Journal of Cardiology, 2018, 269, 259-264.	1.7	8
64	Noninvasive light emitting diode therapy: A novel approach for postinfarction ventricular arrhythmias and neuroimmune modulation. Journal of Cardiovascular Electrophysiology, 2019, 30, 1138-1147.	1.7	8
65	Erythropoiesis changes with increasing age in the elderly Chinese. International Journal of Laboratory Hematology, 2021, 43, 1168-1173.	1.3	8
66	Vagal Stimulation and Arrhythmias. Journal of Atrial Fibrillation, 2020, 13, 2398.	0.5	8
67	Sympathetic mechanisms in an animal model of vasovagal syncope. Clinical Autonomic Research, 2018, 28, 333-340.	2.5	7
68	Regulation of the NRG1/ErbB4 Pathway in the Intrinsic Cardiac Nervous System Is a Potential Treatment for Atrial Fibrillation. Frontiers in Physiology, 2018, 9, 1082.	2.8	7
69	Interaction between Endothelin-1 and Left Stellate Ganglion Activation: A Potential Mechanism of Malignant Ventricular Arrhythmia during Myocardial Ischemia. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-11.	4.0	7
70	c-Cbl inhibition: A novel therapeutic approach for attenuating myocardial ischemia and reperfusion injury. International Journal of Cardiology, 2015, 186, 50-51.	1.7	5
71	Deceleration Capacity Improves Prognostic Accuracy of Relative Increase and Final Coronary Physiology in Patients With Non-ST-Elevation Acute Coronary Syndrome. Frontiers in Cardiovascular Medicine, 2022, 9, 848499.	2.4	5
72	Similar effects of vagus nerve stimulation and atrial ganglionated plexi stimulation on ventricular effective refractory period and action potential duration in canine. International Journal of Cardiology, 2013, 168, 5116-5118.	1.7	4

#	Article	IF	CITATIONS
73	Tumor necrosis factor-α inhibitor: A promising therapeutic approach for attenuating myocardial ischemia–reperfusion by antioxidant stress. International Journal of Cardiology, 2015, 190, 282-283.	1.7	4
74	A potential link between left stellate ganglion and renal sympathetic nerve: An important mechanism for cardiac arrhythmias?. International Journal of Cardiology, 2015, 179, 123-124.	1.7	4
75	Vagus nerve stimulation: A spear role or a shield role in atrial fibrillation?. International Journal of Cardiology, 2015, 198, 115-116.	1.7	3
76	Low-level carotid baroreceptor stimulation: A promising feasible modulator for ventricular and atrial arrhythmias. International Journal of Cardiology, 2015, 199, 430-431.	1.7	3
77	Does the kidney play an important role in the generation of ventricular arrhythmias and sudden cardiac death?. Clinical Research in Cardiology, 2015, 104, 192-193.	3.3	3
78	Cardiac autonomic tone modulators: Promising feasible options for heart failure with hyper-sympathetic activity. International Journal of Cardiology, 2015, 198, 185-186.	1.7	3
79	Electrical stimulation-based renal nerve mapping exacerbates ventricular arrhythmias during acute myocardial ischaemia. Journal of Hypertension, 2018, 36, 1342-1350.	0.5	3
80	DEFEAT-HF Trial: The potential causes for the negative result. International Journal of Cardiology, 2015, 191, 271-272.	1.7	2
81	Noninvasive vagus nerve stimulation: A novel feasible approach for cardioprotection during ischemia–reperfusion injury. International Journal of Cardiology, 2015, 191, 13-14.	1.7	2
82	Renal sympathetic denervation: A potential therapeutic approach for long QT syndrome. International Journal of Cardiology, 2015, 197, 206-207.	1.7	2
83	Selective ablation of the ligament of Marshall reduces ischemia and reperfusion-induced ventricular arrhythmias. PLoS ONE, 2018, 13, e0203083.	2.5	2
84	Selective ablation of the ligament of Marshall attenuates atrial electrical remodeling in a shortâ€ŧerm rapid atrial pacing canine model. Journal of Cardiovascular Electrophysiology, 2018, 29, 1299-1307.	1.7	2
85	Clinical validation of a delta check model in haematology automated counting improves data validation. International Journal of Laboratory Hematology, 2020, 42, 77-81.	1.3	2
86	Renal denervation for the treatment of atrial fibrillation in hypertensive patients or beyond?. International Journal of Cardiology, 2015, 189, 59-60.	1.7	1
87	Magnetic fields in noninvasive heart stimulation: A novel approach for anti-atrial fibrillation. International Journal of Cardiology, 2015, 190, 54-55.	1.7	1
88	Extracardiac autonomic modulations: Potential therapeutic options for myocardial ischemia-induced ventricular arrhythmia. International Journal of Cardiology, 2015, 188, 45-46.	1.7	1
89	Renal denervation: Should we ignore the proximal segment of renal artery?. International Journal of Cardiology, 2017, 249, 364.	1.7	0
90	Interleukin-18 in cardiomyocyte: A novel therapeutic target for attenuating cardiac remodeling. International Journal of Cardiology, 2018, 254, 263.	1.7	0