
Nehal Elkhoshkhany

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1153793/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrodeposition and corrosion behavior of nano-structured Ni-WC and Ni-Co-WC composite coating. Journal of Alloys and Compounds, 2017, 695, 1505-1514.	5.5	105
2	Optical Properties of quaternary TeO2–ZnO–Nb2O5–Gd2O3 glasses. Ceramics International, 2014, 40, 14477-14481.	4.8	92
3	Preparation of geopolymer concrete using Egyptian kaolin clay and the study of its environmental effects and economic cost. Clean Technologies and Environmental Policy, 2020, 22, 669-687.	4.1	83
4	Mechanical and thermal properties of TeO2–Bi2O3–V2O5–Na2O–TiO2 glass system. Ceramics International, 2016, 42, 19218-19224.	4.8	59
5	Thermal, FTIR and UV spectral studies on tellurite glasses doped with cerium oxide. Ceramics International, 2018, 44, 2789-2796.	4.8	52
6	Ni–TiN and Ni-Co-TiN composite coatings for corrosion protection: Fabrication and electrochemical characterization. Journal of Alloys and Compounds, 2018, 735, 600-606.	5.5	50
7	Concentration dependence of the elastic moduli, thermal properties, and non-isothermal kinetic parameters of Yb3+ doped multicomponent tellurite glass system. Results in Physics, 2020, 16, 102876.	4.1	46
8	Optical properties and crystallization of bismuth boro-tellurite glasses. Journal of Non-Crystalline Solids, 2017, 476, 15-24.	3.1	44
9	Synthesis and optical properties of new fluoro-tellurite glass within (TeO 2 -ZnO-LiF-Nb 2 O 5 -NaF) system. Journal of Non-Crystalline Solids, 2017, 472, 39-45.	3.1	38
10	Structural, thermal and optical properties of oxy-fluoro borotellurite glasses. Journal of Materials Research and Technology, 2020, 9, 2946-2959.	5.8	35
11	Thermal properties of quaternary TeO2–ZnO–Nb2O5–Gd2O3 glasses. Ceramics International, 2014, 40, 11985-11994.	4.8	33
12	Preparation and study of optical, thermal, and antibacterial properties of vanadate–tellurite glass. Ceramics International, 2017, 43, 15635-15644.	4.8	30
13	Influence of Sm2O3 addition on Judd-Ofelt parameters, thermal and optical properties of the TeO2-Li2O-ZnO-Nb2O5 glass system. Materials Characterization, 2018, 144, 274-286.	4.4	30
14	Structural and optical properties of TeO2-Li2O-ZnO-Nb2O5-Er2O3 glass system. Journal of Non-Crystalline Solids, 2018, 500, 289-301.	3.1	30
15	UV–Vis-NIR spectroscopy, structural and thermal properties of novel oxyhalide tellurite glasses with composition TeO2-B2O3-SrCl2-LiF-Bi2O3 for optical application. Results in Physics, 2019, 13, 102222.	4.1	26
16	Influence of La2O3 on the structural, optical and thermal properties of TeO2–ZnO–Li2O–Nb2O5 glass. Journal of Non-Crystalline Solids, 2020, 536, 119994.	3.1	23
17	Optical and kinetics parameters of lithium boro-tellurite glasses. Ceramics International, 2015, 41, 3561-3567.	4.8	22
18	Kinetic characterization of TeO 2 –Bi 2 O 3 –V 2 O 5 –Na 2 O –TiO 2 glass system. Ceramics International, 2017, 43, 6156-6162.	4.8	22

NEHAL ELKHOSHKHANY

#	Article	IF	CITATIONS
19	Optical, thermal and antibacterial properties of tellurite glass system doped with ZnO. Materials Chemistry and Physics, 2018, 214, 489-498.	4.0	21
20	Elastic properties of quaternaryTeO2–ZnO–Nb2O5–Gd2O3 glasses. Ceramics International, 2015, 41, 9862-9866.	4.8	16
21	Kinetics characterization of erbium-doped tellurite glass. Ceramics International, 2018, 44, 6829-6835.	4.8	16
22	Effect of heat treatment on erbium-doped tellurite glass. Materials Chemistry and Physics, 2019, 221, 467-476.	4.0	14
23	Detailed study about the thermal behavior and kinetics characterization of an oxyfluoride tellurite glass. Journal of Non-Crystalline Solids, 2018, 486, 19-26.	3.1	12
24	Physical, optical, thermal, and gamma-ray shielding features of fluorotellurite lithiumniobate glasses: TeO2-LiNbO3-BaO-BaF2-La2O3. Journal of Materials Science: Materials in Electronics, 2021, 32, 3743-3752.	2.2	12
25	Investigation of structural and luminescence properties of borosilicate glass doped with Dy2O3. Results in Physics, 2021, 27, 104544.	4.1	11
26	Enhanced thermal stability and optical and structural properties of Tm+3 ions in doped tellurite glasses for photonic use. Results in Physics, 2021, 24, 104202.	4.1	10
27	Kinetics characterization and visible photoluminescence spectroscopy of an erbium-doped tellurite glass. Results in Physics, 2019, 14, 102370.	4.1	9
28	High Stability Performance of Superhydrophobic Modified Fluorinated Graphene Films on Copper Alloy Substrates. Advances in Materials Science and Engineering, 2017, 2017, 1-8.	1.8	7
29	Properties of tellurite glass doped with ytterbium oxide for optical applications. Journal of Materials Science: Materials in Electronics, 2019, 30, 6963-6976.	2.2	7
30	Thermal Stability, Optical Properties, and Gamma Shielding Properties of Tellurite Glass Modified with Potassium Chloride. Materials, 2022, 15, 2403.	2.9	5
31	Spectroscopic properties in simple cost glasses with alkaline oxides doped with Sm2O3 for display laser emission. Results in Physics, 2021, 31, 104955.	4.1	2
32	Study of ionizing radiation attenuation of glass as: gamma rays shielding material. , 2022, 19, 227-239.		0