Jean-Marc Jancu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11537630/publications.pdf

Version: 2024-02-01

		840776	940533
18	2,630 citations	11	16
papers	citations	h-index	g-index
18	18	18	3841
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Importance of Spin–Orbit Coupling in Hybrid Organic/Inorganic Perovskites for Photovoltaic Applications. Journal of Physical Chemistry Letters, 2013, 4, 2999-3005.	4.6	1,021
2	Empiricalspds*tight-binding calculation for cubic semiconductors: General method and material parameters. Physical Review B, 1998, 57, 6493-6507.	3.2	658
3	Anharmonicity and Disorder in the Black Phases of Cesium Lead Iodide Used for Stable Inorganic Perovskite Solar Cells. ACS Nano, 2018, 12, 3477-3486.	14.6	546
4	DFT and $\langle b \rangle \langle i \rangle k \langle b \rangle \hat{A} \langle b \rangle \langle i \rangle p \langle i \rangle \langle b \rangle$ modelling of the phase transitions of lead and tin halide perovskites for photovoltaic cells. Physica Status Solidi - Rapid Research Letters, 2014, 8, 31-35.	2.4	177
5	Electronic properties of 2D and 3D hybrid organic/inorganic perovskites for optoelectronic and photovoltaic applications. Optical and Quantum Electronics, 2014, 46, 1225-1232.	3.3	60
6	Symmetry-Based Tight Binding Modeling of Halide Perovskite Semiconductors. Journal of Physical Chemistry Letters, 2016, 7, 3833-3840.	4.6	57
7	Density Functional Theory Simulations of Semiconductors for Photovoltaic Applications: Hybrid Organic-Inorganic Perovskites and III/V Heterostructures. International Journal of Photoenergy, 2014, 2014, 1-11.	2.5	23
8	Uniaxial-stress determination of the symmetry of excitons associated with the miniband dispersion in (Ga,In)As-GaAs superlattices. Physical Review B, 1992, 46, 4764-4768.	3.2	18
9	Equations of state and a tight-binding model for strained layers: Application to a ZnSe-GaAs epilayer. Physical Review B, 1993, 48, 2452-2459.	3.2	17
10	Boundary conditions in multibandkâ«pmodels: A tight-binding test. Physical Review B, 1999, 59, 9691-9694.	3.2	15
10	Boundary conditions in multibandkâpmodels: A tight-binding test. Physical Review B, 1999, 59, 9691-9694. [001] strain-induced band mixing in zinc-blende semiconductors: Intravalence versus upper-conduction–valence band effects. Physical Review B, 1994, 50, 16956-16963.	3.2	15
	[001] strain-induced band mixing in zinc-blende semiconductors: Intravalence versus		
11	[001] strain-induced band mixing in zinc-blende semiconductors: Intravalence versus upper-conduction–valence band effects. Physical Review B, 1994, 50, 16956-16963.		14
11 12	[001] strain-induced band mixing in zinc-blende semiconductors: Intravalence versus upper-conduction–valence band effects. Physical Review B, 1994, 50, 16956-16963. Theoretical insights into hybrid perovskites for photovoltaic applications. , 2016, , . Normal-incidence intersubband absorption in AlGaSb quantum wells. Journal of Applied Physics, 2002,	3.2	6
11 12 13	[001] strain-induced band mixing in zinc-blende semiconductors: Intravalence versus upper-conduction–valence band effects. Physical Review B, 1994, 50, 16956-16963. Theoretical insights into hybrid perovskites for photovoltaic applications. , 2016, , . Normal-incidence intersubband absorption in AlGaSb quantum wells. Journal of Applied Physics, 2002, 92, 641-643. Theoretical and experimental studies of (In,Ga)As/GaP quantum dots. Nanoscale Research Letters, 2012,	3.2 2.5	14 6 5
11 12 13	[001] strain-induced band mixing in zinc-blende semiconductors: Intravalence versus upper-conduction–valence band effects. Physical Review B, 1994, 50, 16956-16963. Theoretical insights into hybrid perovskites for photovoltaic applications. , 2016, , . Normal-incidence intersubband absorption in AlGaSb quantum wells. Journal of Applied Physics, 2002, 92, 641-643. Theoretical and experimental studies of (In,Ga)As/GaP quantum dots. Nanoscale Research Letters, 2012, 7, 643. Assessment of GaPSb/Si tandem material association properties for photoelectrochemical cells. Solar	3.2 2.5 5.7	14 6 5
11 12 13 14	[001] strain-induced band mixing in zinc-blende semiconductors: Intravalence versus upper-conductionâ€"valence band effects. Physical Review B, 1994, 50, 16956-16963. Theoretical insights into hybrid perovskites for photovoltaic applications. , 2016, , . Normal-incidence intersubband absorption in AlGaSb quantum wells. Journal of Applied Physics, 2002, 92, 641-643. Theoretical and experimental studies of (In,Ga)As/GaP quantum dots. Nanoscale Research Letters, 2012, 7, 643. Assessment of GaPSb/Si tandem material association properties for photoelectrochemical cells. Solar Energy Materials and Solar Cells, 2021, 221, 110888. Evidence of electronic confinement in pseudomorphic Si/GaAs superlattices. Physical Review B, 1998,	3.2 2.5 5.7	14 6 5 4