Hugo A Tejeda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11537150/publications.pdf

Version: 2024-02-01

		623734	839539
18	1,249	14	18
papers	citations	h-index	g-index
21	21	21	1692
21	21	21	1092
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Juvenile Antioxidant Treatment Prevents Adult Deficits in a Developmental Model of Schizophrenia. Neuron, 2014, 83, 1073-1084.	8.1	169
2	Enhanced vulnerability to the rewarding effects of nicotine during the adolescent period of development. Pharmacology Biochemistry and Behavior, 2008, 90, 658-663.	2.9	147
3	Pathway- and Cell-Specific Kappa-Opioid Receptor Modulation of Excitation-Inhibition Balance DifferentiallyÂGates D1 and D2 Accumbens Neuron Activity. Neuron, 2017, 93, 147-163.	8.1	124
4	Circuit specificity in the inhibitory architecture of the VTA regulates cocaine-induced behavior. Nature Neuroscience, 2017, 20, 438-448.	14.8	108
5	Prefrontal Cortical Kappa-Opioid Receptor Modulation of Local Neurotransmission and Conditioned Place Aversion. Neuropsychopharmacology, 2013, 38, 1770-1779.	5.4	105
6	Female rats display dose-dependent differences to the rewarding and aversive effects of nicotine in an age-, hormone-, and sex-dependent manner. Psychopharmacology, 2009, 206, 303-312.	3.1	98
7	Amygdala inputs drive feedforward inhibition in the medial prefrontal cortex. Journal of Neurophysiology, 2013, 110, 221-229.	1.8	85
8	Dynorphin/kappa-opioid receptor control of dopamine dynamics: Implications for negative affective states and psychiatric disorders. Brain Research, 2019, 1713, 91-101.	2.2	81
9	Adolescent nicotine exposure produces less affective measures of withdrawal relative to adult nicotine exposure in male rats. Neurotoxicology and Teratology, 2007, 29, 17-22.	2.4	79
10	Nicotine withdrawal produces a decrease in extracellular levels of dopamine in the nucleus accumbens that is lower in adolescent versus adult male rats. Synapse, 2010, 64, 136-145.	1.2	55
11	Prefrontal Cortical Kappa Opioid Receptors Attenuate Responses to Amygdala Inputs. Neuropsychopharmacology, 2015, 40, 2856-2864.	5.4	47
12	Dysregulation of kappa-opioid receptor systems by chronic nicotine modulate the nicotine withdrawal syndrome in an age-dependent manner. Psychopharmacology, 2012, 224, 289-301.	3.1	43
13	Cooperative synaptic and intrinsic plasticity in a disynaptic limbic circuit drive stress-induced anhedonia and passive coping in mice. Molecular Psychiatry, 2021, 26, 1860-1879.	7.9	37
14	The effects of kappa-opioid receptor ligands on prepulse inhibition and CRF-induced prepulse inhibition deficits in the rat. Psychopharmacology, 2010, 210, 231-240.	3.1	21
15	Cocaine-Dependent Acquisition of Locomotor Sensitization and Conditioned Place Preference Requires D1 Dopaminergic Signaling through a Cyclic AMP, NCS-Rapgef2, ERK, and Egr-1/Zif268 Pathway. Journal of Neuroscience, 2021, 41, 711-725.	3 . 6	17
16	Dynorphin/Kappa-Opioid Receptor System Modulation of Cortical Circuitry. Handbook of Experimental Pharmacology, 2021, 271, 223-253.	1.8	10
17	Neuropeptide System Regulation of Prefrontal Cortex Circuitry: Implications for Neuropsychiatric Disorders. Frontiers in Neural Circuits, 0, 16, .	2.8	10
18	Amygdala Inputs to the Prefrontal Cortex Elicit Heterosynaptic Suppression of Hippocampal Inputs. Journal of Neuroscience, 2014, 34, 14365-14374.	3.6	9