List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11537038/publications.pdf Version: 2024-02-01

		11235	15253
210	18,710	73	130
papers	citations	h-index	g-index
215	215	215	13701
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Elevated LDL Cholesterol with a Carbohydrate-Restricted Diet: Evidence for a "Lean Mass Hyper-Responder―Phenotype. Current Developments in Nutrition, 2022, 6, nzab144.	0.1	23
2	Reply to M Mindrum and J Moore et al. Current Developments in Nutrition, 2022, 6, nzac029.	0.1	0
3	Case Report: Hypercholesterolemia "Lean Mass Hyper-Responder―Phenotype Presents in the Context of a Low Saturated Fat Carbohydrate-Restricted Diet. Frontiers in Endocrinology, 2022, 13, 830325.	1.5	6
4	The Lipid Energy Model: Reimagining Lipoprotein Function in the Context of Carbohydrate-Restricted Diets. Metabolites, 2022, 12, 460.	1.3	15
5	Controversies in Vitamin D: A Statement From the Third International Conference. JBMR Plus, 2020, 4, e10417.	1.3	118
6	Prediagnostic 25-Hydroxyvitamin D Concentrations in Relation to Tumor Molecular Alterations and Risk of Breast Cancer Recurrence. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1253-1263.	1.1	4
7	27-Hydroxycholesterol, an Endogenous SERM, and Risk of Fracture in Postmenopausal Women: A Nested Case-Cohort Study in the Women's Health Initiative. Journal of Bone and Mineral Research, 2019, 34, 59-66.	3.1	12
8	Vitamin D and obstructive sleep apnea: a systematic review and meta-analysis. Sleep Medicine, 2018, 43, 100-108.	0.8	38
9	Williams syndrome transcription factor (WSTF) acts as an activator of estrogen receptor signaling in breast cancer cells and the effect can be abrogated by 11±,25-dihydroxyvitamin D3. Journal of Steroid Biochemistry and Molecular Biology, 2018, 177, 171-178.	1.2	10
10	ldentification of tumor-autonomous and indirect effects of vitamin D action that inhibit breast cancer growth and tumor progression. Journal of Steroid Biochemistry and Molecular Biology, 2018, 177, 155-158.	1.2	13
11	Vitamin D supplementation decreases serum 27-hydroxycholesterol in a pilot breast cancer trial. Breast Cancer Research and Treatment, 2018, 167, 797-802.	1.1	16
12	Genetic Disorders Of Vitamin D Synthesis and Action. , 2018, , 735-759.		1
13	Overview of Vitamin D Actions in Cancer. , 2018, , 711-742.		2
14	Hereditary 1,25-Dihydroxyvitamin D Resistant Rickets. , 2018, , 263-301.		6
15	Association of 25-hydroxyvitamin D levels and cutaneous melanoma: A nested case-control study of the Women's Health Initiative Observation Study. Journal of the American Academy of Dermatology, 2018, 79, 145-147.	0.6	7
16	Vitamin D mitigates the adverse effects of obesity on breast cancer in mice. Endocrine-Related Cancer, 2016, 23, 251-264.	1.6	42
17	Androgen–glucocorticoid interactions in the era of novel prostate cancer therapy. Nature Reviews Urology, 2016, 13, 47-60.	1.9	65
18	Relationship Among 25-Hydroxyvitamin D Concentrations, Insulin Action, and Cardiovascular Disease Risk in Patients With Essential Hypertension. American Journal of Hypertension, 2015, 28, 266-272.	1.0	15

#	Article	IF	CITATIONS
19	Low Circulating 25-Hydroxyvitamin D Concentrations Are Associated with Defects in Insulin Action and Insulin Secretion in Persons with Prediabetes ,. Journal of Nutrition, 2015, 145, 714-719.	1.3	34
20	Inhibition of Mouse Breast Tumor-Initiating Cells by Calcitriol and Dietary Vitamin D. Molecular Cancer Therapeutics, 2015, 14, 1951-1961.	1.9	56
21	The role of vitamin D in reducing cancer risk and progression. Nature Reviews Cancer, 2014, 14, 342-357.	12.8	1,019
22	Vitamin D receptor mutations in patients with hereditary 1,25-dihydroxyvitamin D-resistant rickets. Molecular Genetics and Metabolism, 2014, 111, 33-40.	0.5	51
23	Mutations in the vitamin D receptor and hereditary vitamin D-resistant rickets. BoneKEy Reports, 2014, 3, 510.	2.7	98
24	Equivalent anticancer activities of dietary vitamin D and calcitriol in an animal model of breast cancer: Importance of mammary CYP27B1 for treatment and prevention. Journal of Steroid Biochemistry and Molecular Biology, 2013, 136, 289-295.	1.2	36
25	Enteral calcium infusion used successfully as treatment for a patient with hereditary vitamin D resistant rickets (HVDRR) without alopecia: A novel mutation. Gene, 2013, 512, 554-559.	1.0	18
26	Transrepression of the estrogen receptor promoter by calcitriol in human breast cancer cells via two negative vitamin D response elements. Endocrine-Related Cancer, 2013, 20, 565-577.	1.6	38
27	Genetic Disorders of Vitamin D Synthesis and Action. , 2013, , 537-552.		2
28	Linear Beta Pricing with Inefficient Benchmarks. Quarterly Journal of Finance, 2013, 03, 1350004.	0.4	4
29	The Role of the Vitamin D Receptor and ERp57 in Photoprotection by 1α,25-Dihydroxyvitamin D3. Molecular Endocrinology, 2012, 26, 574-582.	3.7	87
30	Dietary Vitamin D3 and 1,25-Dihydroxyvitamin D3 (Calcitriol) Exhibit Equivalent Anticancer Activity in Mouse Xenograft Models of Breast and Prostate Cancer. Endocrinology, 2012, 153, 2576-2587.	1.4	137
31	The Role of Vitamin D in Cancer Prevention and Treatment. Rheumatic Disease Clinics of North America, 2012, 38, 161-178.	0.8	51
32	Genetic Disorders and Defects in Vitamin D Action. Rheumatic Disease Clinics of North America, 2012, 38, 93-106.	0.8	25
33	The potential therapeutic benefits of vitamin D in the treatment of estrogen receptor positive breast cancer. Steroids, 2012, 77, 1107-1112.	0.8	71
34	Combination of calcitriol and dietary soy exhibits enhanced anticancer activity and increased hypercalcemic toxicity in a mouse xenograft model of prostate cancer. Prostate, 2012, 72, 1628-1637.	1.2	27
35	Synthesis and Biological Evaluation of 1α,25-Dihydroxyvitamin D ₃ Analogues Hydroxymethylated at C-26. Journal of Medicinal Chemistry, 2011, 54, 3950-3962.	2.9	11
36	Mechanisms of the Anti-Cancer and Anti-Inflammatory Actions of Vitamin D. Annual Review of Pharmacology and Toxicology, 2011, 51, 311-336.	4.2	408

#	Article	IF	CITATIONS
37	Vitamin D metabolism and action in the prostate: Implications for health and disease. Molecular and Cellular Endocrinology, 2011, 347, 61-69.	1.6	46
38	The role of vitamin D receptor mutations in the development of alopecia. Molecular and Cellular Endocrinology, 2011, 347, 90-96.	1.6	87
39	Inhibitory Effects of Calcitriol on the Growth of MCF-7 Breast Cancer Xenografts in Nude Mice: Selective Modulation of Aromatase Expression in vivo. Hormones and Cancer, 2011, 2, 190-202.	4.9	52
40	Hereditary vitamin D–resistant rickets (HVDRR) owing to a heterozygous mutation in the vitamin D receptor. Journal of Bone and Mineral Research, 2011, 26, 2710-2718.	3.1	36
41	Report of two unrelated patients with hereditary vitamin D resistant rickets due to the same novel mutation in the vitamin D receptor. Journal of Pediatric Endocrinology and Metabolism, 2011, 24, 793-9.	0.4	17
42	Vitamin D and Prostate Cancer. , 2011, , 1675-1709.		3
43	Hereditary 1,25-Dihydroxyvitamin-D-Resistant Rickets. , 2011, , 1197-1232.		11
44	Anti-inflammatory Activity of Calcitriol in Cancer. , 2011, , 53-71.		2
45	Molecular pathways mediating the anti-inflammatory effects of calcitriol: implications for prostate cancer chemoprevention and treatment. Endocrine-Related Cancer, 2010, 17, R19-R38.	1.6	117
46	Two New Unrelated Cases of Hereditary 1,25-Dihydroxyvitamin D-resistant Rickets with Alopecia resulting from the same Novel Nonsense Mutation in the Vitamin D Receptor Gene. Journal of Pediatric Endocrinology and Metabolism, 2010, 23, 843-50.	0.4	33
47	The role of vitamin D and SLCO1B1 gene polymorphism in statin-associated myalgias. Dermato-Endocrinology, 2010, 2, 77-84.	1.9	41
48	The Role of Vitamin D in Cancer Prevention and Treatment. Endocrinology and Metabolism Clinics of North America, 2010, 39, 401-418.	1.2	156
49	Genetic Disorders and Defects in Vitamin D Action. Endocrinology and Metabolism Clinics of North America, 2010, 39, 333-346.	1.2	145
50	Vitamin D and breast cancer: Inhibition of estrogen synthesis and signaling. Journal of Steroid Biochemistry and Molecular Biology, 2010, 121, 343-348.	1.2	112
51	Hereditary 1,25-dihydroxyvitamin D-resistant rickets with alopecia resulting from a novel missense mutation in the DNA-binding domain of the vitamin D receptor. Molecular Genetics and Metabolism, 2010, 99, 72-79.	0.5	47
52	Tissue-Selective Regulation of Aromatase Expression by Calcitriol: Implications for Breast Cancer Therapy. Endocrinology, 2010, 151, 32-42.	1.4	167
53	Anti-inflammatory Activity of Calcitriol That Contributes to Its Therapeutic and Chemopreventive Effects in Prostate Cancer. , 2010, , 1087-1104.		1
54	Molecular Defects in the Vitamin D Receptor Associated with Hereditary 1,25-Dihydroxyvitamin D-Resistant Rickets (HVDRR). , 2010, , 691-714.		0

#	Article	IF	CITATIONS
55	Vitamin D: Biology, Action, and Clinical Implications. , 2010, , 279-344.		1
56	Modulation of Vitamin D Receptor Activity by the Corepressor Hairless: Differential Effects of Hairless Isoforms. Endocrinology, 2009, 150, 4950-4957.	1.4	20
57	Inhibition of prostaglandin synthesis and actions contributes to the beneficial effects of calcitriol in prostate cancer. Dermato-Endocrinology, 2009, 1, 7-11.	1.9	14
58	Unraveling Insulin-Like Growth Factor Binding Protein-3 Actions in Human Disease. Endocrine Reviews, 2009, 30, 417-437.	8.9	271
59	Interaction of the Vitamin D Receptor with a Vitamin D Response Element in the MuÌ^llerian-Inhibiting Substance (MIS) Promoter: Regulation of MIS Expression by Calcitriol in Prostate Cancer Cells. Endocrinology, 2009, 150, 1580-1587.	1.4	97
60	Inhibition of prostaglandin synthesis and actions by genistein in human prostate cancer cells and by soy isoflavones in prostate cancer patients. International Journal of Cancer, 2009, 124, 2050-2059.	2.3	63
61	Prostatic soy isoflavone concentrations exceed serum levels after dietary supplementation. Prostate, 2009, 69, 719-726.	1.2	64
62	Compound Heterozygous Mutations in the Vitamin D Receptor in a Patient With Hereditary 1,25-Dihydroxyvitamin D-Resistant Rickets With Alopecia. Journal of Bone and Mineral Research, 2009, 24, 643-651.	3.1	30
63	Hereditary vitamin D resistant rickets: Identification of a novel splice site mutation in the vitamin D receptor gene and successful treatment with oral calcium therapy. Bone, 2009, 45, 743-746.	1.4	40
64	Inactivation of the Human Vitamin D Receptor by Caspase-3. Endocrinology, 2009, 150, 679-686.	1.4	21
65	A phase II trial of calcitriol and naproxen in recurrent prostate cancer. Anticancer Research, 2009, 29, 3605-10.	0.5	47
66	Selenite Treatment Inhibits LAPC-4 Tumor Growth and Prostate-Specific Antigen Secretion in a Xenograft Model of Human Prostate Cancer. International Journal of Radiation Oncology Biology Physics, 2008, 72, 935-940.	0.4	21
67	The role of insulinâ€like growth factor binding proteinâ€3 in the growth inhibitory actions of androgens in LNCaP human prostate cancer cells. International Journal of Cancer, 2008, 122, 558-566.	2.3	23
68	Vitamin D: Biology, Action, and Clinical Implications. , 2008, , 317-382.		3
69	Interactions of the Vitamin D Receptor with the Corepressor Hairless. Journal of Biological Chemistry, 2007, 282, 25231-25239.	1.6	44
70	A unique insertion/duplication in the VDR gene that truncates the VDR causing hereditary 1,25-dihydroxyvitamin D-resistant rickets without alopecia. Archives of Biochemistry and Biophysics, 2007, 460, 285-292.	1.4	37
71	Novel pathways that contribute to the anti-proliferative and chemopreventive activities of calcitriol in prostate cancer. Journal of Steroid Biochemistry and Molecular Biology, 2007, 103, 694-702.	1.2	87
72	Calcitriol as a Chemopreventive and Therapeutic Agent in Prostate Cancer: Role of Anti-Inflammatory Activity. Journal of Bone and Mineral Research, 2007, 22, V74-V80.	3.1	56

#	Article	IF	CITATIONS
73	Calcitriol and Genistein Actions to Inhibit the Prostaglandin Pathway: Potential Combination Therapy to Treat Prostate Cancer ,3. Journal of Nutrition, 2007, 137, 205S-210S.	1.3	47
74	Incomplete information equilibria: Separation theorems and other myths. Annals of Operations Research, 2007, 151, 119-149.	2.6	43
75	Vitamin D Inhibition of the Prostaglandin Pathway as Therapy for Prostate Cancer. Nutrition Reviews, 2007, 65, S113-S115.	2.6	15
76	Potentiation of the Growth-Inhibitory Effects of Vitamin D in Prostate Cancer by Genistein. Nutrition Reviews, 2007, 65, S121-S123.	2.6	7
77	Phase II study evaluating oral triamcinolone in patients with androgen-independent prostate cancer. Urology, 2006, 67, 1001-1006.	0.5	3
78	Sex steroid hormones in young manhood and the risk of subsequent prostate cancer: a longitudinal study in African-Americans and Caucasians (United States). Cancer Causes and Control, 2006, 17, 1237-1244.	0.8	31
79	Growth Inhibitory Concentrations of Androgens Up-Regulate Insulin-Like Growth Factor Binding Protein-3 Expression via an Androgen Response Element in LNCaP Human Prostate Cancer Cells. Endocrinology, 2006, 147, 4599-4607.	1.4	26
80	Fulvestrant (ICI 182,780) down-regulates androgen receptor expression and diminishes androgenic responses in LNCaP human prostate cancer cells. Molecular Cancer Therapeutics, 2006, 5, 1539-1549.	1.9	52
81	Inhibition of p38 by Vitamin D Reduces Interleukin-6 Production in Normal Prostate Cells via Mitogen-Activated Protein Kinase Phosphatase 5: Implications for Prostate Cancer Prevention by Vitamin D. Cancer Research, 2006, 66, 4516-4524.	0.4	178
82	Inhibition of androgen receptor signaling by selenite and methylseleninic acid in prostate cancer cells: two distinct mechanisms of action. Molecular Cancer Therapeutics, 2006, 5, 2078-2085.	1.9	48
83	Enhanced Coactivator Binding and Transcriptional Activation of Mutant Vitamin D Receptors From Patients With Hereditary 1,25-Dihydroxyvitamin D-Resistant Rickets by Phosphorylation and Vitamin D Analogs. Journal of Bone and Mineral Research, 2005, 20, 1680-1691.	3.1	13
84	Regulation of Prostaglandin Metabolism by Calcitriol Attenuates Growth Stimulation in Prostate Cancer Cells. Cancer Research, 2005, 65, 7917-7925.	0.4	208
85	PROSTATE SPECIFIC ANTIGEN LEVELS IN YOUNG ADULTHOOD PREDICT PROSTATE CANCER RISK: RESULTS FROM A COHORT OF BLACK AND WHITE AMERICANS. Journal of Urology, 2005, 174, 872-876.	0.2	75
86	Hereditary 1,25-Dihydroxyvitamin D—Resistant Rickets. , 2005, , 1207-1237.		12
87	Molecular mechanisms mediating the anti-proliferative effects of Vitamin D in prostate cancer. Journal of Steroid Biochemistry and Molecular Biology, 2005, 97, 31-36.	1.2	96
88	Genistein potentiates the growth inhibitory effects of 1,25-dihydroxyvitamin D3 in DU145 human prostate cancer cells: Role of the direct inhibition of CYP24 enzyme activity. Molecular and Cellular Endocrinology, 2005, 241, 49-61.	1.6	87
89	Vitamin D and Prostate Cancer. , 2005, , 1679-1707.		9
90	Hereditary 1,25-Dihydroxyvitamin D Resistant Rickets due to a Mutation Causing Multiple Defects in Vitamin D Receptor Function. Endocrinology, 2004, 145, 5106-5114.	1.4	57

#	Article	IF	CITATIONS
91	Identification of a Functional Vitamin D Response Element in the Human Insulin-Like Growth Factor Binding Protein-3 Promoter. Molecular Endocrinology, 2004, 18, 1109-1119.	3.7	129
92	Analysis of vitamin D-regulated gene expression in LNCaP human prostate cancer cells using cDNA microarrays. Prostate, 2004, 59, 243-251.	1.2	116
93	A Unique Insertion/Substitution in Helix H1 of the Vitamin D Receptor Ligand Binding Domain in a Patient With Hereditary 1,25-Dihydroxyvitamin D-Resistant Rickets. Journal of Bone and Mineral Research, 2004, 19, 1018-1024.	3.1	43
94	Mechanisms of decreased Vitamin D 1α-hydroxylase activity in prostate cancer cells. Molecular and Cellular Endocrinology, 2004, 221, 67-74.	1.6	40
95	Molecular activity of 1,25-dihydroxyvitamin D3 in primary cultures of human prostatic epithelial cells revealed by cDNA microarray analysis. Journal of Steroid Biochemistry and Molecular Biology, 2004, 92, 131-141.	1.2	101
96	Interaction of nuclear receptor ligands with the Vitamin D signaling pathway in prostate cancer. Journal of Steroid Biochemistry and Molecular Biology, 2004, 92, 307-315.	1.2	41
97	Risk of early-onset prostate cancer in relation to germ line polymorphisms of the vitamin D receptor. Cancer Epidemiology Biomarkers and Prevention, 2004, 13, 1325-30.	1.1	25
98	Vitamin D Growth Inhibition of Breast Cancer Cells: Gene Expression Patterns Assessed by cDNA Microarray. Breast Cancer Research and Treatment, 2003, 80, 49-62.	1.1	173
99	Inhibition of prostate cancer growth by vitamin D: Regulation of target gene expression. Journal of Cellular Biochemistry, 2003, 88, 363-371.	1.2	154
100	The Role of Vitamin D in Prostate Cancer. Recent Results in Cancer Research, 2003, 164, 205-221.	1.8	60
101	Hereditary 1,25-Dihydroxyvitamin D-Resistant Rickets. , 2003, 6, 175-199.		28
102	Pathways Mediating the Growth-Inhibitory Actions of Vitamin D in Prostate Cancer. Journal of Nutrition, 2003, 133, 2461S-2469S.	1.3	64
103	A Low-Calcemic Vitamin D Analog (Ro 25-4020) Inhibits the Growth of LNCaP Human Prostate Cancer Cells with Increased Potency by Producing an Active 24-Oxo Metabolite (Ro 29-9970). Recent Results in Cancer Research, 2003, 164, 349-352.	1.8	8
104	Vitamin D receptor start codon polymorphism (Fokl) and prostate cancer progression. Cancer Epidemiology Biomarkers and Prevention, 2003, 12, 23-7.	1.1	19
105	A Novel Mutation in Helix 12 of the Vitamin D Receptor Impairs Coactivator Interaction and Causes Hereditary 1,25-Dihydroxyvitamin D-Resistant Rickets without Alopecia. Molecular Endocrinology, 2002, 16, 2538-2546.	3.7	86
106	A Glucocorticoid-Responsive Mutant Androgen Receptor Exhibits Unique Ligand Specificity: Therapeutic Implications for Androgen-Independent Prostate Cancer. Endocrinology, 2002, 143, 1889-1900.	1.4	67
107	A novel nonsense mutation in the ligand binding domain of the vitamin D receptor causes hereditary 1,25-dihydroxyvitamin D-resistant rickets. Molecular Genetics and Metabolism, 2002, 77, 314-318.	0.5	34
108	Preclinical Activity of Ketoconazole in Combination With Calcitriol or the Vitamin D Analogue Eb 1089 in Prostate Cancer Cells. Journal of Urology, 2002, 168, 1583-1588.	0.2	78

#	Article	IF	CITATIONS
109	Production and the Real Rate of Interest: A Sample Path Equilibrium. SSRN Electronic Journal, 2002, , .	0.4	1
110	The Term Structure of Interest Rates: Bounded or Falling. SSRN Electronic Journal, 2002, , .	0.4	1
111	Preclinical activity of ketoconazole in combination with calcitriol or the vitamin D analogue EB 1089 in prostate cancer cells. Journal of Urology, 2002, 168, 1583-8.	0.2	22
112	A Novel Inborn Error in the Ligand-Binding Domain of the Vitamin D Receptor Causes Hereditary Vitamin D-Resistant Rickets. Molecular Genetics and Metabolism, 2001, 73, 138-148.	0.5	53
113	Estradiol inhibits glucocorticoid receptor expression and induces glucocorticoid resistance in MCF-7 human breast cancer cells. Journal of Steroid Biochemistry and Molecular Biology, 2001, 77, 29-37.	1.2	44
114	The role of vitamin D in prostate cancer. Steroids, 2001, 66, 293-300.	0.8	65
115	Rationale for combination ketoconazole/ vitamin D treatment of prostate cancer. Urology, 2001, 58, 123-126.	0.5	22
116	INSULIN-LIKE GROWTH FACTOR BINDING PROTEIN-3 MEDIATES $1\hat{I}_{\pm}$,25-DIHYDROXYVITAMIN D 3 GROWTH INHIBITION IN THE LNCaP PROSTATE CANCER CELL LINE THROUGH P21/WAF1. Journal of Urology, 2001, 165, 1319-1324.	0.2	167
117	The development of androgen-independent prostate cancer. Nature Reviews Cancer, 2001, 1, 34-45.	12.8	2,057
118	A Rationale for Treatment of Hereditary Vitamin D-resistant Rickets with Analogs of 1α,25-Dihydroxyvitamin D3. Journal of Biological Chemistry, 2001, 276, 29148-29156.	1.6	48
119	Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nature Medicine, 2000, 6, 703-706.	15.2	468
120	Vitamin D Receptor Polymorphisms and Nutritional Rickets in Nigerian Children. Journal of Bone and Mineral Research, 2000, 15, 2206-2210.	3.1	71
121	Fluorescent in Situ Hybridization Study of c-myc Oncogene Copy Number in Prostate Cancer. Experimental and Molecular Pathology, 2000, 68, 65-69.	0.9	9
122	Editorial/Mini-Review: Vitamin D and Prostate Cancer. Endocrinology, 2000, 141, 5-9.	1.4	98
123	1,25-Dihydroxyvitamin D3 decreases human prostate cancer cell adhesion and migration. Molecular and Cellular Endocrinology, 2000, 164, 133-143.	1.6	109
124	1α,25-Dihydroxyvitamin D3 Inhibits Prostate Cancer Cell Growth by Androgen-Dependent and Androgen-Independent Mechanisms*. Endocrinology, 2000, 141, 2548-2556.	1.4	89
125	Conceptually New 20-epi-22-Oxa Sulfone Analogues of the Hormone 1α,25-Dihydroxyvitamin D3: Synthesis and Biological Evaluation. Journal of Medicinal Chemistry, 2000, 43, 3581-3586.	2.9	24
126	Induction of Androgen Receptor by 1α,25-Dihydroxyvitamin D ₃ and 9-cis Retinoic Acid in LNCaP Human Prostate Cancer Cells ¹ . Endocrinology, 1999, 140, 1205-1212.	1.4	108

#	Article	IF	CITATIONS
127	Liarozole Acts Synergistically with 1α,25-Dihydroxyvitamin D ₃ to Inhibit Growth of DU 145 Human Prostate Cancer Cells by Blocking 24-Hydroxylase Activity ¹ . Endocrinology, 1999, 140, 2071-2076.	1.4	153
128	The Vitamin D Receptor and the Syndrome of Hereditary 1,25-Dihydroxyvitamin D-Resistant Rickets*. Endocrine Reviews, 1999, 20, 156-188.	8.9	306
129	Fluorescence in Situ Hybridization Study of HER-2/neu Oncogene Amplification in Prostate Cancer. Experimental and Molecular Pathology, 1999, 66, 170-178.	0.9	54
130	TWO MUTATIONS IDENTIFIED IN THE ANDROGEN RECEPTOR OF THE NEW HUMAN PROSTATE CANCER CELL LINE MDA PCA 2A. Journal of Urology, 1999, 162, 2192-2199.	0.2	98
131	Vitamin D resistance11This paper is adapted from an extensive review of Vitamin D resistance published in Endocrine Reviews, April 1999 American Journal of Medicine, 1999, 106, 355-370.	0.6	41
132	Vitamin D, parathyroid hormone, and calcium: a complex regulatory network. American Journal of Medicine, 1999, 107, 637-639.	0.6	36
133	Hereditary Resistance to Vitamin D. , 1999, , 59-85.		0
134	Lack of Correlation Between Start Codon Polymorphism of the Vitamin D Receptor Gene and Bone Mineral Density in Premenopausal French Women: The OFELY Study. Journal of Bone and Mineral Research, 1998, 13, 31-35.	3.1	121
135	The Vitamin D Receptor Gene Start Codon Polymorphism: A Functional Analysis of Fokl Variants. Journal of Bone and Mineral Research, 1998, 13, 1691-1699.	3.1	211
136	Hereditary 1,25-Dihydroxyvitamin D-Resistant Rickets Due to an Opal Mutation Causing Premature Termination of the Vitamin D Receptor. Journal of Bone and Mineral Research, 1998, 13, 259-264.	3.1	46
137	TREATMENT OF EARLY RECURRENT PROSTATE CANCER WITH 1,25-DIHYDROXYVITAMIN D3 (CALCITRIOL). Journal of Urology, 1998, 159, 2035-2040.	0.2	228
138	Vitamin D Receptor Gene Polymorphisms: Analysis of Ligand Binding and Hormone Responsiveness in Cultured Skin Fibroblasts. Biochemical and Biophysical Research Communications, 1998, 242, 467-473.	1.0	65
139	1α,25-Dihydroxyvitamin D3 Actions in LNCaP Human Prostate Cancer Cells Are Androgen-Dependent*. Endocrinology, 1997, 138, 3290-3298.	1.4	90
140	1,25-Dihydroxyvitamin D ₃ Induction of Nerve Growth Factor in L929 Mouse Fibroblasts: Effect of Vitamin D Receptor Regulation and Potency of Vitamin D ₃ Analogs ¹ . Endocrinology, 1997, 138, 12-18.	1.4	48
141	Analysis of Vitamin D Analog-Induced Heterodimerization of Vitamin D Receptor with Retinoid X Receptor Using the Yeast Two-Hybrid System. Molecular Endocrinology, 1997, 11, 366-378.	3.7	42
142	Vitamin D Receptor Polymorphisms, Bone Mineral Density, and Bone Metabolism in Postmenopausal Mexican-American Women. Journal of Bone and Mineral Research, 1997, 12, 234-240.	3.1	60
143	The Vitamin D Receptor Start Codon Polymorphism (Fokl) and Bone Mineral Density in Premenopausal American Black and White Women. Journal of Bone and Mineral Research, 1997, 12, 1043-1048.	3.1	254
144	Syndrome of lipoatrophic diabetes, vitamin D resistant rickets, and persistent Müllerian ducts in a Turkish boy born to consanguineous parents. , 1996, 64, 506-513.		34

#	Article	IF	CITATIONS
145	Parathyroid hormone-related protein (PTHrP) is an epidermal growth factor-regulated secretory product of human prostatic epithelial cells. , 1996, 29, 20-29.		50
146	The presence of a polymorphism at the translation initiation site of the vitamin D receptor gene is associated with low bone mineral density in postmenopausal mexican-American women. Journal of Bone and Mineral Research, 1996, 11, 1850-1855.	3.1	379
147	Suramin, hydrocortisone, and retinoic acid modify inhibitory effects of 1,25-dihydroxyvitamin D3 on prostatic epithelial cells. Urologic Oncology: Seminars and Original Investigations, 1995, 1, 188-194.	0.8	14
148	Estrogens in Unexpected Places: Possible Implications for Researchers and Consumers. Environmental Health Perspectives, 1995, 103, 129.	2.8	23
149	Vitamin D and Prostate Cancer. Advances in Experimental Medicine and Biology, 1995, 375, 53-63.	0.8	61
150	Logarithmic Preferences, Myopic Decisions, and Incomplete Information. Journal of Financial and Quantitative Analysis, 1992, 27, 619.	2.0	52
151	VITAMIN D RECEPTOR MUTATIONS AND HEREDITARY 1,25-DIHYDROXYVITAMIN D RESISTANT RICKETS. , 1991, , 116-124.		3
152	Activation of Protein Kinase-C Inhibits Vitamin D Receptor Gene Expression. Molecular Endocrinology, 1991, 5, 605-612.	3.7	62
153	Stimulation of 1,25-dihydroxyvitamin D3 receptor gene expression in cultured cells by serum and growth factors. Journal of Bone and Mineral Research, 1991, 6, 1099-1107.	3.1	71
154	Hereditary 1,25-dihydroxyvitamin D resistant rickets: Molecular basis and implications for the role of 1,25(OH)2D3 in normal physiology. Molecular and Cellular Endocrinology, 1990, 72, C57-C62.	1.6	47
155	Characterization of an Estrogen-Binding Protein in the Yeast <i>Candida albicans</i> *. Endocrinology, 1989, 124, 1965-1972.	1.4	66
156	Abnormal Binding of Vitamin D Receptors to Deoxyribonucleic Acid in a Kindred With Vitamin D-Dependent Rickets, Type II*. Journal of Clinical Endocrinology and Metabolism, 1989, 68, 263-269.	1.8	88
157	Epidermal Growth Factor Increases Intestinal Calbindin-D _{9k} and 1,25-Dihydroxyvitamin D Receptors in Neonatal Rats*. Endocrinology, 1989, 125, 478-485.	1.4	29
158	Human Vitamin D Receptor Mutations: Identification of Molecular Defects in Hypocalcemic Vitamin D Resistant Rickets. Advances in Experimental Medicine and Biology, 1989, 255, 491-503.	0.8	12
159	Estrogen Down-Regulation of Androgen Receptors in Cultured Human Mammary Cancer Cells (MCF-7)*. Endocrinology, 1987, 120, 2597-2603.	1.4	33
160	Measurement of 1,25-Dihydroxyvitamin D3 Receptor Turnover by Dense Amino Acid Labeling: Changes during Receptor Up-Regulation by Vitamin D Metabolites*. Endocrinology, 1987, 120, 1173-1178.	1.4	66
161	Modulation of 1,25-dihydroxyvitamin D3 receptor binding and action by sodium butyrate in cultured pig kidney cells (LLC-PK1). Journal of Bone and Mineral Research, 1987, 2, 151-159.	3.1	14
162	Homologous up-regulation of the 1,25 (OH)2 vitamin D3 receptor in rats. Biochemical and Biophysical Research Communications, 1986, 137, 742-747.	1.0	112

#	Article	IF	CITATIONS
163	Cleavage of the rat intestinal 1,25-dihydroxyvitamin D3 receptor by an endogenous protease to a form with defective DNA binding. Archives of Biochemistry and Biophysics, 1986, 250, 153-161.	1.4	16
164	The Effects of 1,25-Dihydroxyvitamin D ₃ and Dexamethasone on Rat Osteoblast-Like Primary Cell Cultures: Receptor Occupancy and Functional Expression Patterns for Three Different Bioresponses*. Endocrinology, 1986, 118, 250-259.	1.4	117
165	Hormonal responses to 1,25-dihydroxyvitamin D3 in cultured mouse osteoblast-like cells?modulation by changes in receptor level. Journal of Cellular Physiology, 1986, 126, 21-28.	2.0	65
166	Ketoconazole and Other Imidazole Derivatives as Inhibitors of Steroidogenesis. Endocrine Reviews, 1986, 7, 409-420.	8.9	207
167	1,25-Dihydroxyvitamin D ₃ Receptors and Hormonal Responses in Cloned Human Skeletal Muscle Cells*. Endocrinology, 1986, 119, 2214-2220.	1.4	162
168	Regulation of 1,25-Dihydroxyvitamin D3 Receptors by Vitamin D Analogs in Cultured Mammalian Cells*. Endocrinology, 1985, 117, 2203-2210.	1.4	156
169	Vitamin D Resistance and Alopecia: A Kindred with Normal 1,25-Dihydroxyvitamin D Binding, but Decreased Receptor Affinity for Deoxyribonucleic Acid*. Journal of Clinical Endocrinology and Metabolism, 1985, 60, 490-495.	1.8	107
170	Retinoic acid modulation of 1,25(OH)2 vitamin D3 receptors and bioresponse in bone cells: Species differences between rat and mouse. Biochemical and Biophysical Research Communications, 1985, 132, 74-80.	1.0	42
171	Inhibition of steroidogenic cytochrome P-450 enzymes in rat testis by ketoconazole and related imidazole anti-fungal drugs. The Journal of Steroid Biochemistry, 1985, 23, 1023-1029.	1.3	86
172	Inhibition of Adrenal Steroidogenesis by the Anesthetic Etomidate. New England Journal of Medicine, 1984, 310, 1415-1421.	13.9	505
173	1,25-Dihydroxyvitamin D Resistance, Rickets, and Alopecia: Analysis of Receptors and Bioresponse in Cultured Fibroblasts from Patients and Parents*. Journal of Clinical Endocrinology and Metabolism, 1984, 59, 383-388.	1.8	78
174	Modulation of PTH-stimulated cyclic AMP in cultured rodent bone cells: The effects of 1,25(OH)2 vitamin D3 and its interaction with glucocorticoids. Calcified Tissue International, 1984, 36, 580-585.	1.5	24
175	1,25-dihydroxyvitamin D resistance, rickets, and alopecia. American Journal of Medicine, 1984, 77, 805-811.	0.6	107
176	Effects of 1α,25-dihydroxyvitamin D3 and glucocorticoids on the growth of rat and mouse osteoblast-like bone cells. Calcified Tissue International, 1983, 35, 806-811.	1.5	55
177	Regulation of 1,25(OH)2vitamin D3 receptor content in cultured LLC-PK1 kidney cells limits hormonal responsiveness. Biochemical and Biophysical Research Communications, 1983, 116, 121-127.	1.0	38
178	Ketoconazole binds to the intracellular corticosteroid-binding protein in Candida albicans. Biochemical and Biophysical Research Communications, 1983, 117, 43-50.	1.0	20
179	Glucocorticoid Modulation of Cell Proliferation in Cultured Osteoblast-Like Bone Cells: Differences between Rat and Mouse*. Endocrinology, 1983, 112, 1739-1745.	1.4	72
180	VITAMIN D RESISTANT RICKETS WITH ALOPECIA: CULTURED SKIN FIBROBLASTS EXHIBIT DEFECTIVE CYTOPLASMIC RECEPTORS AND UNRESPONSIVENESS TO 1,25(OH)2D3. Journal of Clinical Endocrinology and Metabolism, 1982, 55, 1020-1022.	1.8	167

#	Article	IF	CITATIONS
181	GLUCOCORTICOID REGULATION OF 1,25(OH) ₂ VITAMIN D ₃ RECEPTORS: DIVERGENT EFFECTS ON MOUSE AND RAT INTESTINE. Endocrinology, 1982, 111, 1400-1402.	1.4	78
182	Glucocorticoids down-regulate the number of 1,25-dihydroxyvitamin D3 receptors in mouse intestine. Biochemical and Biophysical Research Communications, 1982, 105, 1590-1596.	1.0	38
183	1,25-Dihydroxyvitamin D3 receptors in mouse colon. The Journal of Steroid Biochemistry, 1981, 14, 315-319.	1.3	19
184	1,25-DIHYDROXYVITAMIN D ₃ AND MALIGNANT MELANOMA: THE PRESENCE OF RECEPTORS AND INHIBITION OF CELL GROWTH IN CULTURE. Endocrinology, 1981, 108, 1083-1086.	1.4	541
185	A corticosteroid binding protein and endogenous ligand in C. albicans indicating a possible steroid-receptor system. Nature, 1981, 293, 477-479.	13.7	93
186	Organ Distribution of the Cytoplasmic 1,25- Dihydroxycholecalciferol Receptor in Various Mouse Tissues*. Endocrinology, 1980, 107, 1916-1922.	1.4	160
187	DEMONSTRATION OF 1,25-DIHYDROXYVITAMIN D ₃ RECEPTORS IN HUMAN SKIN BIOPSIES. Journal of Clinical Endocrinology and Metabolism, 1980, 51, 1463-1465.	1.8	191
188	DEMONSTRATION OF A 1,25-DIHYDROXYCHOLECALCIFEROL CYTOPLASMIC RECEPTOR-LIKE BINDER IN MOUSE KIDNEY. Journal of Clinical Endocrinology and Metabolism, 1979, 49, 798-800.	1.8	51
189	Synthesis and Secretion of Corticosteroid-Binding Globulin by Rat Liver. Journal of Clinical Investigation, 1979, 63, 461-467.	3.9	54
190	Glucocorticoid Receptors and Actions in Subpopulations of Cultured Rat Bone Cells. Journal of Clinical Investigation, 1979, 63, 750-758.	3.9	131
191	Is the glucocorticoid receptor identical in various target organs?. The Journal of Steroid Biochemistry, 1978, 9, 141-145.	1.3	48
192	Receptor mediated glucocorticoid inhibition of protein synthesis in isolated bone cells. The Journal of Steroid Biochemistry, 1978, 9, 265-271.	1.3	30
193	Binding of some non-steroidal anti-inflammatory drugs to glucocorticoid receptors in vitro. Biochemical Pharmacology, 1978, 27, 1187-1191.	2.0	4
194	Distinction between Alpha-Fetoprotein and Intracellular Estrogen Receptors: Evidence against the Presence of Estradiol Receptors in Rat Bone*. Endocrinology, 1978, 102, 236-244.	1.4	132
195	Glucocorticoid Potentiation of the Adenosine 3′,5′- Monophosphate Response to Parathyroid Hormone in Cultured Rat Bone Cells*. Endocrinology, 1978, 102, 589-596.	1.4	75
196	Glucocorticoid Receptors in Adipose Tissue. Endocrinology, 1977, 100, 398-405.	1.4	82
197	Glucocorticoid Receptors and Inhibition of Bone Cell Growth in Primary Culture ¹ ² . Endocrinology, 1977, 100, 619-628.	1.4	170
198	Cytoplasmic Glucocorticoid Binding Proteins in Bone Cells. Endocrinology, 1975, 96, 29-36.	1.4	73

#	Article	IF	CITATIONS
199	Autoradiographic Localization of Corticosterone Receptors (Type III) to the Collecting Tubule of the Rat Kidney. Endocrinology, 1975, 97, 505-516.	1.4	41
200	Ontogeny of Rat Hepatic Glucocorticoid Receptors. Endocrinology, 1974, 95, 1219-1227.	1.4	79
201	Molecular modifications of anti-aldosterone compounds: Effects on affinity of spirolactones for renal aldosterone receptors. Biochemical Pharmacology, 1974, 23, 1493-1501.	2.0	108
202	Glucocorticoid Receptors in Rat Kidney: The Rinding of Tritiated-Dexamethasone1. Endocrinology, 1973, 92, 1005-1013.	1.4	178
203	The Roles of Plasma Binding and Receptor Specificity in the Mineralocorticoid Action of Aldosterone1. Endocrinology, 1973, 92, 994-1004.	1.4	234
204	Evidence for a New Class of Corticosterone Receptors in the Rat Kidney1. Endocrinology, 1973, 92, 1429-1441.	1.4	132
205	Subcellular mechanisms in the action of adrenal steroids. American Journal of Medicine, 1972, 53, 545-560.	0.6	268
206	Specific aldosterone binding in rat kidney and parotid. The Journal of Steroid Biochemistry, 1972, 3, 209-218.	1.3	114
207	1α,25-Dihydroxyvitamin D3 Actions in LNCaP Human Prostate Cancer Cells Are Androgen-Dependent. , 0, .		32
208	$1 \hat{l} \pm, 25$ -Dihydroxyvitamin D3 Inhibits Prostate Cancer Cell Growth by Androgen-Dependent and Androgen-Independent Mechanisms. , 0, .		36
209	Linear Beta Pricing with Inefficient Benchmarks. SSRN Electronic Journal, 0, , .	0.4	6
210	Minimal Dynamic Equilibria. SSRN Electronic Journal, 0, , .	0.4	0