
Julian F Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11535924/publications.pdf Version: 2024-02-01

IIIIIAN F MILLER

#	Article	IF	CITATIONS
1	Cartesian Genetic Programming. Lecture Notes in Computer Science, 2000, , 121-132.	1.0	540
2	Information Characteristics and the Structure of Landscapes. Evolutionary Computation, 2000, 8, 31-60.	2.3	220
3	Principles in the Evolutionary Design of Digital Circuits—Part I. Genetic Programming and Evolvable Machines, 2000, 1, 7-35.	1.5	186
4	Principles in the Evolutionary Design of Digital Circuits—Part II. Genetic Programming and Evolvable Machines, 2000, 1, 259-288.	1.5	162
5	From artificial evolution to computational evolution: a research agenda. Nature Reviews Genetics, 2006, 7, 729-735.	7.7	124
6	The Advantages of Landscape Neutrality in Digital Circuit Evolution. Lecture Notes in Computer Science, 2000, , 252-263.	1.0	93
7	Evolution-in-materio: evolving computation in materials. Evolutionary Intelligence, 2014, 7, 49-67.	2.3	84
8	Fast learning neural networks using Cartesian genetic programming. Neurocomputing, 2013, 121, 274-289.	3.5	77
9	Smoothness, Ruggedness and Neutrality of Fitness Landscapes: from Theory to Application. Natural Computing Series, 2003, , 3-44.	2.2	48
10	Developments in Cartesian Genetic Programming: self-modifying CGP. Genetic Programming and Evolvable Machines, 2010, 11, 397-439.	1.5	44
11	Evolutionary Algorithms for Boolean Functions in Diverse Domains of Cryptography. Evolutionary Computation, 2016, 24, 667-694.	2.3	38
12	Evolution of neural networks using Cartesian Genetic Programming. , 2010, , .		36
13	Self Modifying Cartesian Genetic Programming: Fibonacci, Squares, Regression and Summing. Lecture Notes in Computer Science, 2009, , 133-144.	1.0	31
14	An evolutionary system using development and artificial Genetic Regulatory Networks for electronic circuit design. BioSystems, 2009, 98, 176-192.	0.9	26
15	Evolution of Robot Controller Using Cartesian Genetic Programming. Lecture Notes in Computer Science, 2005, , 62-73.	1.0	23
16	Representation of Boolean quantum circuits as reed–Muller expansions. International Journal of Electronics, 2004, 91, 431-444.	0.9	22
17	Efficient representation of Recurrent Neural Networks for markovian/non-markovian non-linear control problems. , 2010, , .		22
18	Reservoir computing in materio: An evaluation of configuration through evolution. , 2016, , .		16

2

Julian F Miller

#	Article	IF	CITATIONS
19	Evolution-in-materio: solving computational problems using carbon nanotube–polymer composites. Soft Computing, 2016, 20, 3007-3022.	2.1	15
20	Where is the brain inside the brain?. Memetic Computing, 2011, 3, 217-228.	2.7	13
21	Evolution-in-materio: A frequency classifier using materials. , 2014, , .		13
22	Evolution-in-materio: Solving bin packing problems using materials. , 2014, , .		13
23	Evolution-in-materio: Solving function optimization problems using materials. , 2014, , .		12
24	Generating Human-readable Algorithms for the Travelling Salesman Problem using Hyper-Heuristics. , 2015, , .		11
25	On the Advantages of Variable Length GRNs for the Evolution of Multicellular Developmental Systems. IEEE Transactions on Evolutionary Computation, 2013, 17, 100-121.	7.5	9
26	On the properties of artificial development and its use in evolvable hardware. , 2009, , .		8
27	GECCO 2013 tutorial. , 2013, , .		8
28	A model for intrinsic artificial development featuring structural feedback and emergent growth. , 2009, , .		7
29	Coevolution of Neuro-developmental Programs That Play Checkers. Lecture Notes in Computer Science, 2008, , 352-361.	1.0	7
30	An evolutionary system using development and artificial Genetic Regulatory Networks. , 2008, , .		6
31	An Investigation of the Importance of Mechanisms and Parameters in a Multicellular Developmental System. IEEE Transactions on Evolutionary Computation, 2011, 15, 313-345.	7.5	6
32	A scalable solution to n-bit parity via artificial development. , 2009, , .		5
33	Cartesian Genetic Programming and the Post Docking Filtering Problem. , 2005, , 225-244.		3
34	Task decomposition and evolvability in intrinsic evolvable hardware. , 2009, , .		2
35	Editorial to tenth anniversary issue on progress in genetic programming and evolvable machines. Genetic Programming and Evolvable Machines, 2010, 11, 247-250.	1.5	2
36	The CGP Developmental Network. Natural Computing Series, 2011, , 255-291.	2.2	2

#	Article	IF	CITATIONS
37	Obtaining system robustness by mimicking natural mechanisms. , 2009, , .		1
38	Modular design from gene regulation in a cellular system. , 2010, , .		1
39	The input pattern order problem II: Evolution of multiple-output circuits in hardware. , 2009, , .		0