
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11534564/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. International Journal of Infectious Diseases, 2020, 92, 214-217.	3.3	1,428
2	A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action. International Journal of Infectious Diseases, 2020, 93, 211-216.	3.3	859
3	Estimating the Unreported Number of Novel Coronavirus (2019-nCoV) Cases in China in the First Half of January 2020: A Data-Driven Modelling Analysis of the Early Outbreak. Journal of Clinical Medicine, 2020, 9, 388.	2.4	378
4	The relative transmissibility of asymptomatic COVID-19 infections among close contacts. International Journal of Infectious Diseases, 2020, 94, 145-147.	3.3	199
5	Decreased Case Fatality Rate of COVIDâ€19 in the Second Wave: A study in 53 countries or regions. Transboundary and Emerging Diseases, 2021, 68, 213-215.	3.0	136
6	The association between domestic train transportation and novel coronavirus (2019-nCoV) outbreak in China from 2019 to 2020: A data-driven correlational report. Travel Medicine and Infectious Disease, 2020, 33, 101568.	3.0	132
7	Mathematical modeling of COVID-19 epidemic with effect of awareness programs. Infectious Disease Modelling, 2021, 6, 448-460.	1.9	83
8	Modelling the large-scale yellow fever outbreak in Luanda, Angola, and the impact of vaccination. PLoS Neglected Tropical Diseases, 2018, 12, e0006158.	3.0	83
9	Estimation of exponential growth rate and basic reproduction number of the coronavirus disease 2019 (COVID-19) in Africa. Infectious Diseases of Poverty, 2020, 9, 96.	3.7	79
10	Quantifying the transmission advantage associated with N501Y substitution of SARS-CoV-2 in the UK: an early data-driven analysis. Journal of Travel Medicine, 2021, 28, .	3.0	79
11	Preliminary estimates of the reproduction number of the coronavirus disease (COVID-19) outbreak in Republic of Korea and Italy by 5 March 2020. International Journal of Infectious Diseases, 2020, 95, 308-310.	3.3	77
12	Preliminary estimation of the novel coronavirus disease (COVID-19) cases in Iran: A modelling analysis based on overseas cases and air travel data. International Journal of Infectious Diseases, 2020, 94, 29-31.	3.3	72
13	Quantifying the association between domestic travel and the exportation of novel coronavirus (2019-nCoV) cases from Wuhan, China in 2020: a correlational analysis. Journal of Travel Medicine, 2020, 27, .	3.0	71
14	Imitation dynamics in the mitigation of the novel coronavirus disease (COVID-19) outbreak in Wuhan, China from 2019 to 2020. Annals of Translational Medicine, 2020, 8, 448-448.	1.7	60
15	Modeling the spread of Middle East respiratory syndrome coronavirus in Saudi Arabia. Statistical Methods in Medical Research, 2018, 27, 1968-1978.	1.5	55
16	Estimating the generation interval and inferring the latent period of COVID-19 from the contact tracing data. Epidemics, 2021, 36, 100482.	3.0	55
17	Estimating the Serial Interval of the Novel Coronavirus Disease (COVID-19): A Statistical Analysis Using the Public Data in Hong Kong From January 16 to February 15, 2020. Frontiers in Physics, 2020, 8, .	2.1	53
18	COVID-19 and gender-specific difference: Analysis of public surveillance data in Hong Kong and Shenzhen, China, from January 10 to February 15, 2020. Infection Control and Hospital Epidemiology, 2020, 41, 750-751.	1.8	53

#	Article	IF	CITATIONS
19	Mechanistic modelling of the large-scale Lassa fever epidemics in Nigeria from 2016 to 2019. Journal of Theoretical Biology, 2020, 493, 110209.	1.7	44
20	Serial interval in determining the estimation of reproduction number of the novel coronavirus disease (COVID-19) during the early outbreak. Journal of Travel Medicine, 2020, 27, .	3.0	43
21	Simple framework for real-time forecast in a data-limited situation: the Zika virus (ZIKV) outbreaks in Brazil from 2015 to 2016 as an example. Parasites and Vectors, 2019, 12, 344.	2.5	42
22	Comparing COVID-19 and the 1918–19 influenza pandemics in the United Kingdom. International Journal of Infectious Diseases, 2020, 98, 67-70.	3.3	38
23	A re-analysis in exploring the association between temperature and COVID-19 transmissibility: an ecological study with 154 Chinese cities. European Respiratory Journal, 2020, 56, 2001253.	6.7	34
24	Epidemiological Parameters of COVID-19: Case Series Study. Journal of Medical Internet Research, 2020, 22, e19994.	4.3	33
25	Large-scale Lassa fever outbreaks in Nigeria: quantifying the association between disease reproduction number and local rainfall. Epidemiology and Infection, 2020, 148, e4.	2.1	32
26	Estimating the time interval between transmission generations when negative values occur in the serial interval data: using COVID-19 as an example. Mathematical Biosciences and Engineering, 2020, 17, 3512-3519.	1.9	32
27	A comparison study of Zika virus outbreaks in French Polynesia, Colombia and the State of Bahia in Brazil. Scientific Reports, 2017, 7, 273.	3.3	31
28	A mathematical model to study the 2014–2015 large-scale dengue epidemics in Kaohsiung and Tainan cities in Taiwan, China. Mathematical Biosciences and Engineering, 2019, 16, 3841-3863.	1.9	31
29	Long-term exposure to fine particulate matter and dementia incidence: A cohort study in Hong Kong. Environmental Pollution, 2021, 271, 116303.	7.5	30
30	Modelling the effective reproduction number of vector-borne diseases: the yellow fever outbreak in Luanda, Angola 2015–2016 as an example. PeerJ, 2020, 8, e8601.	2.0	30
31	Estimating the serial interval of the novel coronavirus disease (COVIDâ€19) based on the public surveillance data in Shenzhen, China, from 19 January to 22 February 2020. Transboundary and Emerging Diseases, 2020, 67, 2818-2822.	3.0	29
32	Reinfection or Reactivation of Severe Acute Respiratory Syndrome Coronavirus 2: A Systematic Review. Frontiers in Public Health, 2021, 9, 663045.	2.7	29
33	Ratio of asymptomatic COVID-19 cases among ascertained SARS-CoV-2 infections in different regions and population groups in 2020: a systematic review and meta-analysis including 130 123 infections from 241 studies. BMJ Open, 2021, 11, e049752.	1.9	29
34	Superspreading and heterogeneity in transmission of SARS, MERS, and COVID-19: A systematic review. Computational and Structural Biotechnology Journal, 2021, 19, 5039-5046.	4.1	28
35	Long-Term Exposure to Ambient Fine Particulate Matter and Mortality From Renal Failure: A Retrospective Cohort Study in Hong Kong, China. American Journal of Epidemiology, 2020, 189, 602-612.	3.4	27
36	The ambient ozone and COVID-19 transmissibility in China: A data-driven ecological study of 154 cities. Journal of Infection, 2020, 81, e9-e11.	3.3	27

#	Article	IF	CITATIONS
37	Modelling the skip-and-resurgence of Japanese encephalitis epidemics in Hong Kong. Journal of Theoretical Biology, 2018, 454, 1-10.	1.7	26
38	Modelling the effects of the contaminated environments on tuberculosis in Jiangsu, China. Journal of Theoretical Biology, 2021, 508, 110453.	1.7	26
39	Strategic decision making about travel during disease outbreaks: a game theoretical approach. Journal of the Royal Society Interface, 2018, 15, 20180515.	3.4	24
40	The basic reproduction number of novel coronavirus (2019-nCoV) estimation based on exponential growth in the early outbreak in China from 2019 to 2020: A reply to Dhungana. International Journal of Infectious Diseases, 2020, 94, 148-150.	3.3	24
41	The shortage of hospital beds for COVID-19 and non-COVID-19 patients during the lockdown of Wuhan, China. Annals of Translational Medicine, 2021, 9, 200-200.	1.7	24
42	Positive RT-PCR tests among discharged COVID-19 patients in Shenzhen, China. Infection Control and Hospital Epidemiology, 2020, 41, 1110-1112.	1.8	23
43	Inferencing superspreading potential using zero-truncated negative binomial model: exemplification with COVID-19. BMC Medical Research Methodology, 2021, 21, 30.	3.1	23
44	Monitoring disease transmissibility of 2019 novel coronavirus disease in Zhejiang, China. International Journal of Infectious Diseases, 2020, 96, 128-130.	3.3	22
45	Increase in Diabetes Mortality Associated With COVID-19 Pandemic in the U.S Diabetes Care, 2021, 44, e146-e147.	8.6	22
46	Low dispersion in theÂinfectiousness of COVID-19 cases implies difficulty in control. BMC Public Health, 2020, 20, 1558.	2.9	21
47	Inferring the Association between the Risk of COVID-19 Case Fatality and N501Y Substitution in SARS-CoV-2. Viruses, 2021, 13, 638.	3.3	21
48	Association of time to diagnosis with socioeconomic position and geographical accessibility to healthcare among symptomatic COVID-19 patients: A retrospective study in Hong Kong. Health and Place, 2020, 66, 102465.	3.3	20
49	Using Proper Mean Generation Intervals in Modeling of COVID-19. Frontiers in Public Health, 2021, 9, 691262.	2.7	20
50	Transmission dynamics of SARS-CoV-2: A modeling analysis with high-and-moderate risk populations. Results in Physics, 2021, 26, 104290.	4.1	19
51	The joint association of physical activity and fine particulate matter exposure with incident dementia in elderly Hong Kong residents. Environment International, 2021, 156, 106645.	10.0	19
52	Forecast of the COVID-19 trend in India: A simple modelling approach. Mathematical Biosciences and Engineering, 2021, 18, 9775-9786.	1.9	19
53	The Heterogeneous Severity of COVID-19 in African Countries: A Modeling Approach. Bulletin of Mathematical Biology, 2022, 84, 32.	1.9	18
54	New estimates of the Zika virus epidemic attack rate in Northeastern Brazil from 2015 to 2016: A modelling analysis based on Guillain-Barré Syndrome (GBS) surveillance data. PLoS Neglected Tropical Diseases, 2020, 14, e0007502.	3.0	16

#	Article	IF	CITATIONS
55	Real-time estimation of the reproduction number of the novel coronavirus disease (COVID-19) in China in 2020 based on incidence data. Annals of Translational Medicine, 2020, 8, 689-689.	1.7	15
56	The long-term changing dynamics of dengue infectivity in Guangdong, China, from 2008–2018: a modelling analysis. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2020, 114, 62-71.	1.8	14
57	Estimation of COVID-19 under-ascertainment in Kano, Nigeria during the early phase of the epidemics. AEJ - Alexandria Engineering Journal, 2021, 60, 4547-4554.	6.4	14
58	Analysing increasing trends of Guillain-Barré Syndrome (GBS) and dengue cases in Hong Kong using meteorological data. PLoS ONE, 2017, 12, e0187830.	2.5	14
59	Effects of particulate matter exposure on the transmissibility and case fatality rate of COVID-19: A Nationwide Ecological Study in China. Journal of Travel Medicine, 2020, 27, .	3.0	13
60	In silico prediction of influenza vaccine effectiveness by sequence analysis. Vaccine, 2021, 39, 1030-1034.	3.8	12
61	To avoid the noncausal association between environmental factor and COVID-19 when using aggregated data: Simulation-based counterexamples for demonstration. Science of the Total Environment, 2020, 748, 141590.	8.0	10
62	Quantifying the importance of the key sites on haemagglutinin in determining the selection advantage of influenza virus: Using A/H3N2 as an example. Journal of Infection, 2020, 81, 452-482.	3.3	10
63	Mathematical modeling and analysis of meningococcal meningitis transmission dynamics. International Journal of Biomathematics, 2020, 13, 2050006.	2.9	9
64	Modelling the association between COVID-19 transmissibility and D614G substitution in SARS-CoV-2 spike protein: using the surveillance data in California as an example. Theoretical Biology and Medical Modelling, 2021, 18, 10.	2.1	9
65	Dynamics analysis of typhoid fever with public health education programs and final epidemic size relation. Results in Applied Mathematics, 2021, 10, 100153.	1.3	9
66	COVID-19 and Lassa fever in Nigeria: A deadly alliance?. International Journal of Infectious Diseases, 2022, 117, 45-47.	3.3	9
67	Meningitis epidemics shift in sub-Saharan belt. International Journal of Infectious Diseases, 2018, 68, 79-82.	3.3	8
68	Phase-shifting of the transmissibility of macrolide-sensitive and resistant Mycoplasma pneumoniae epidemics in Hong Kong, from 2015 to 2018. International Journal of Infectious Diseases, 2019, 81, 251-253.	3.3	8
69	Could the ambient higher temperature decrease the transmissibility of COVID-19 in China?. Environmental Research, 2021, 193, 110576.	7.5	8
70	The changing patterns of COVID-19 transmissibility during the social unrest in the United States: A nationwide ecological study with a before-and-after comparison. One Health, 2021, 12, 100201.	3.4	8
71	Transmissibility of coronavirus disease 2019 in Chinese cities with different dynamics of imported cases. PeerJ, 2020, 8, e10350.	2.0	8
72	Modeling the 2014–2015 Ebola Virus Disease Outbreaks in Sierra Leone, Guinea, and Liberia with Effect of High- and Low-risk Susceptible Individuals. Bulletin of Mathematical Biology, 2020, 82, 102.	1.9	7

#	Article	IF	CITATIONS
73	Associations between Public Awareness, Local Precipitation, and Cholera in Yemen in 2017. American Journal of Tropical Medicine and Hygiene, 2019, 101, 521-524.	1.4	7
74	Superspreading potential of SARS-CoV-2 Delta variants under intensive disease control measures in China. Journal of Travel Medicine, 2022, 29, .	3.0	7
75	Superspreading potential of infection seeded by the SARS-CoV-2 Omicron BA.1 variant in South Korea. Journal of Infection, 2022, 85, e77-e79.	3.3	7
76	Epidemiology of an unexpected measles outbreak in Hong Kong, from March to April, 2019. Travel Medicine and Infectious Disease, 2019, 30, 133-136.	3.0	6
77	Initial COVID-19 Transmissibility and Three Gaseous Air Pollutants (NO2, SO2, and CO): A Nationwide Ecological Study in China. Frontiers in Medicine, 2020, 7, 575839.	2.6	6
78	Predicting the dominant influenza A serotype by quantifying mutation activities. International Journal of Infectious Diseases, 2020, 100, 255-257.	3.3	6
79	A simple approach to estimate the instantaneous case fatality ratio: Using the publicly available COVID-19 surveillance data in Canada as an example. Infectious Disease Modelling, 2020, 5, 575-579.	1.9	6
80	The time serial distribution and influencing factors of asymptomatic COVID-19 cases in Hong Kong. One Health, 2020, 10, 100166.	3.4	6
81	Estimating the time interval between transmission generations and the presymptomatic period by contact tracing surveillance data from 31 provinces in the mainland of China. Fundamental Research, 2021, 1, 104-110.	3.3	6
82	Quantifying the effect of government interventions and virus mutations on transmission advantage during COVID-19 pandemic. Journal of Infection and Public Health, 2022, 15, 338-342.	4.1	6
83	Heterogeneous epidemic modelling within an enclosed space and corresponding Bayesian estimation. Infectious Disease Modelling, 2022, 7, 1-24.	1.9	6
84	Quantifying the improvement in confirmation efficiency of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during the early phase of the outbreak in Hong Kong in 2020. International Journal of Infectious Diseases, 2020, 96, 284-287.	3.3	5
85	An early assessment of a case fatality risk associated with P.1 SARS-CoV-2 lineage in Brazil: an ecological study. Journal of Travel Medicine, 2021, 28, .	3.0	5
86	Exploring the Interaction between E484K and N501Y Substitutions of SARS-CoV-2 in Shaping the Transmission Advantage of COVID-19 in Brazil: A Modeling Study. American Journal of Tropical Medicine and Hygiene, 2021, 105, 1247-1254.	1.4	5
87	The non-pharmaceutical interventions may affect the advantage in transmission of mutated variants during epidemics: A conceptual model for COVID-19. Journal of Theoretical Biology, 2022, 542, 111105.	1.7	5
88	Transmission dynamics of COVID-19 pandemic with combined effects of relapse, reinfection and environmental contribution: A modeling analysis. Results in Physics, 2022, 38, 105653.	4.1	5
89	Characterizing superspreading potential of infectious disease: Decomposition of individual transmissibility. PLoS Computational Biology, 2022, 18, e1010281.	3.2	5
90	<p>Modelling the Measles Outbreak at Hong Kong International Airport in 2019: A Data-Driven Analysis on the Effects of Timely Reporting and Public Awareness</p> . Infection and Drug Resistance, 2020, Volume 13, 1851-1861.	2.7	4

#	Article	IF	CITATIONS
91	Public awareness, news promptness and the measles outbreak in Hong Kong from March to April, 2019. Infectious Diseases, 2020, 52, 284-290.	2.8	4
92	Limited role for meteorological factors on the variability in COVID-19 incidence: A retrospective study of 102 Chinese cities. PLoS Neglected Tropical Diseases, 2021, 15, e0009056.	3.0	4
93	The reproductive number of Lassa fever: a systematic review. Journal of Travel Medicine, 2021, 28, .	3.0	4
94	Differential Influence of Age on the Relationship between Genetic Mismatch and A(H1N1)pdm09 Vaccine Effectiveness. Viruses, 2021, 13, 619.	3.3	4
95	Estimating the Instantaneous Asymptomatic Proportion With a Simple Approach: Exemplified With the Publicly Available COVID-19 Surveillance Data in Hong Kong. Frontiers in Public Health, 2021, 9, 604455.	2.7	4
96	The co-circulating transmission dynamics of SARS-CoV-2 Alpha and Eta variants in Nigeria: A retrospective modeling study of COVID-19. Journal of Global Health, 2021, 11, 05028.	2.7	4
97	The Long-Term Periodic Patterns of Global Rabies Epidemics Among Animals: A Modeling Analysis. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2050047.	1.7	3
98	Attach importance of the bootstrap <i>t</i> test against Student's <i>t</i> test in clinical epidemiology: a demonstrative comparison using COVID-19 as an example. Epidemiology and Infection, 2021, 149, e107.	2.1	3
99	Joint effect between bisphenol A and alcohol consumption on benign prostatic hyperplasia: A case–control study in Hong Kong Chinese males. Prostate, 2021, 81, 1214-1224.	2.3	3
100	Epidemiological parameters and models of coronavirus disease 2019. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 090202.	0.5	3
101	Modelling COVID-19 outbreak on the Diamond Princess ship using the public surveillance data. Infectious Disease Modelling, 2022, 7, 189-195.	1.9	3
102	A Bayesian method for synthesizing multiple diagnostic outcomes of COVID-19 tests. Royal Society Open Science, 2021, 8, 201867.	2.4	2
103	Real-time quantification of the transmission advantage associated with a single mutation in pathogen genomes: a case study on the D614G substitution of SARS-CoV-2. BMC Infectious Diseases, 2021, 21, 1039.	2.9	2
104	Response to Comments on "Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: a data-driven analysis in the early phase of the outbreak― International Journal of Infectious Diseases, 2022, 115, 70-71.	3.3	2
105	A re-analysis to identify the structural breaks in COVID-19 transmissibility during the early phase of the outbreak in South Korea. International Journal of Infectious Diseases, 2020, 100, 10-11.	3.3	1
106	Preliminary estimation of the novel coronavirus disease (COVID-19) cases in Iran: A reply to Sharifi. International Journal of Infectious Diseases, 2020, 95, 429-430.	3.3	1
107	Changes in renal failure mortality during the COVID-19 pandemic in the United States. Journal of Nephrology, 2021, 34, 2167-2170.	2.0	1
108	Shrinkage in serial intervals across transmission generations of COVID-19. Journal of Theoretical Biology, 2021, 529, 110861.	1.7	1

#	Article	IF	CITATIONS
109	How Transportation Restriction Shapes the Relationship Between Ambient Nitrogen Dioxide and COVID-19 Transmissibility: An Exploratory Analysis. Frontiers in Public Health, 2021, 9, 697491.	2.7	ο