
Deyan Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11533557/publications.pdf Version: 2024-02-01

DEVAN LIN

#	Article	IF	CITATIONS
1	Two- and Three-Dimensional Omnidirectional Wireless Power Transfer. IEEE Transactions on Power Electronics, 2014, 29, 4470-4474.	5.4	170
2	A Systematic Approach for Load Monitoring and Power Control in Wireless Power Transfer Systems Without Any Direct Output Measurement. IEEE Transactions on Power Electronics, 2015, 30, 1657-1667.	5.4	138
3	Front-End Monitoring of the Mutual Inductance and Load Resistance in a Series–Series Compensated Wireless Power Transfer System. IEEE Transactions on Power Electronics, 2016, 31, 7339-7352.	5.4	136
4	Mathematic Analysis of Omnidirectional Wireless Power Transfer—Part-II Three-Dimensional Systems. IEEE Transactions on Power Electronics, 2017, 32, 613-624.	5.4	106
5	Front-end monitoring of multiple loads in wireless power transfer systems without wireless communication systems. IEEE Transactions on Power Electronics, 2016, 31, 2510-2517.	5.4	71
6	Unified Load-Independent ZPA Analysis and Design in CC and CV Modes of Higher Order Resonant Circuits for WPT Systems. IEEE Transactions on Transportation Electrification, 2019, 5, 977-987.	5.3	71
7	Load-Independent Voltage and Current Transfer Characteristics of High-Order Resonant Network in IPT System. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 7, 422-436.	3.7	70
8	Basic Control Principles of Omni-Directional Wireless Power Transfer. IEEE Transactions on Power Electronics, 2015, , 1-1.	5.4	68
9	Mathematical Analysis of Omnidirectional Wireless Power Transfer—Part-I: Two-Dimensional Systems. IEEE Transactions on Power Electronics, 2017, 32, 625-633.	5.4	63
10	A Simple Method for Comparative Study on the Thermal Performance of LEDs and Fluorescent Lamps. IEEE Transactions on Power Electronics, 2009, 24, 1811-1818.	5.4	56
11	Gas Discharge Lamps Are Volatile Memristors. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, 61, 2066-2073.	3.5	34
12	Parameter identification of wireless power transfer systems using input voltage and current. , 2014, , .		30
13	Load monitoring and output power control of a wireless power transfer system without any wireless communication feedback. , 2013, , .		14
14	Efficiency optimization method of inductive coupling wireless power transfer system with multiple transmitters and single receiver. , 2016, , .		13
15	Modeling of Cold Cathode Fluorescent Lamps (CCFLs) With Realistic Electrode Profile. IEEE Transactions on Power Electronics, 2010, 25, 699-709.	5.4	8
16	Power and efficiency of 2-D omni-directional wireless power transfer systems. , 2015, , .		6
17	Monitoring of multiple loads in wireless power transfer systems without direct output feedback. , 2014, , .		5
18	Omni-directional wireless power transfer systems using discrete magnetic field vector control. , 2015, , .		5