Yang Pu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11533253/publications.pdf

Version: 2024-02-01

67	1,397	22	37
papers	citations	h-index	g-index
67	67	67	1474
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Identifying metastatic ability of prostate cancer cell lines using native fluorescence spectroscopy and machine learning methods. Scientific Reports, 2021, 11, 2282.	1.6	9
2	Optical-Resolution Photoacoustic Microscopy of Brain Vascular Imaging in Small Animal Tumor Model Using Nanosecond Solid-State Laser., 2019, , 159-187.		3
3	Basic Optical Scattering Parameter of the Brain and Prostate Tissues in the Spectral Range of 400–2400 nm., 2019, , 229-252.		5
4	Combined spatial frequency spectroscopy analysis with visible resonance Raman for optical biopsy of human brain metastases of lung cancers. Journal of Innovative Optical Health Sciences, 2019, 12, .	0.5	15
5	In vivo labelâ€free functional photoacoustic monitoring of ischemic reperfusion. Journal of Biophotonics, 2019, 12, e201800454.	1.1	31
6	A commercialized Microelectromechanical Systems (MEMS)-based rapid scanning photoacoustic microscopy system with switchable optical and acoustic resolutions. , 2019, , .		0
7	A novel fluorescent gold nanoparticle inhibiting migration and invasion of tumor cells. , 2019, , .		O
8	Functional vascular imaging by Photoacoustic Microscopy (PAM) and its biomedical application. , 2019, , .		0
9	Photoacoustic microscopy for evaluating combretastatin A4 phosphate induced vascular disruption in orthotopic glioma. Journal of Biophotonics, 2018, 11, e201700327.	1.1	30
10	A fast MEMS scanning photoacoustic microscopy system and its application in glioma study. , 2018, , .		1
11	A commercialized photoacoustic microscopy system with switchable optical and acoustic resolutions. , $2018, , .$		O
12	Machine learning based analysis of human prostate cancer cell lines at different metastatic ability using native fluorescence spectroscopy with selective excitation wavelength. , $2018, , .$		1
13	Detection of Hemodynamically Significant Coronary Artery Stenosis With CT Enhancement Ratio: A Validation Study in a Porcine Model. American Journal of Roentgenology, 2017, 209, 103-109.	1.0	4
14	Resonance Raman Spectroscopy of human brain metastasis of lung cancer analyzed by blind source separation. Proceedings of SPIE, 2017, , .	0.8	4
15	Evaluation of algorithm methods for fluorescence spectra of cancerous and normal human tissues. , 2016, , .		O
16	Optical pathology of human brain metastasis of lung cancer using combined resonance Raman and spatial frequency spectroscopies. Proceedings of SPIE, 2016, , .	0.8	2
17	A comparison study of different excitation wavelengths to determine the relative content of key biomolecules in breast cancer and breast normal tissue. Proceedings of SPIE, 2015, , .	0.8	O
18	Spoilage of foods monitored by native fluorescence spectroscopy with selective excitation wavelength. Proceedings of SPIE, 2015, , .	0.8	2

#	Article	IF	Citations
19	Optical biopsy - a new armamentarium to detect disease using light. Proceedings of SPIE, 2015, , .	0.8	O
20	High histologic grade and increased relative content of tryptophan in breast cancer using ratios from fingerprint fluorescence spectral peaks. Proceedings of SPIE, 2015, , .	0.8	0
21	Nonnegative constraint analysis of key fluorophores within human breast cancer using native fluorescence spectroscopy excited by selective wavelength of 300 nm. Proceedings of SPIE, 2015, , .	0.8	0
22	Time-resolved fluorescence polarization spectroscopy of visible and near infrared dyes in picosecond dynamics. Proceedings of SPIE, 2015 , , .	0.8	0
23	Resonant Raman spectra of grades of human brain glioma tumors reveal the content of tryptophan by the 1588 cm ⁻¹ mode. Proceedings of SPIE, 2015, , .	0.8	8
24	Tryptophan as key biomarker to detect gastrointestinal tract cancer using non-negative biochemical analysis of native fluorescence and Stokes Shift spectroscopy. Proceedings of SPIE, 2015, , .	0.8	2
25	Optical quantitative pathology of cervical intraepithelial neoplasia in human tissues using spatial frequency analysis. Journal of Biophotonics, 2015, 8, 233-238.	1.1	20
26	Third therapeutic spectral window for deep tissue imaging. Proceedings of SPIE, 2014, , .	0.8	17
27	Diffusion optical spectroscopy of cancerous and normal prostate tissues in time-resolved and frequency domain., 2014,,.		0
28	Spatial frequencies from human periosteum at different depths using two-photon microscopic images, , 2014, , .		0
29	Deep two-photon microscopic imaging through brain tissue using the second singlet state from fluorescent agent chlorophyll α in spinach leaf. Journal of Biomedical Optics, 2014, 19, 066009.	1.4	6
30	Key native fluorophores analysis of human breast cancer tissues using Gram–Schmidt subspace method. Optics Letters, 2014, 39, 6787.	1.7	27
31	Tumor margin detection using optical biopsy techniques. Proceedings of SPIE, 2014, , .	0.8	7
32	Deep tissue imaging of microfracture and non-displaced fracture of bone using the second and third near-infrared therapeutic windows. Proceedings of SPIE, 2014, , .	0.8	4
33	Second and third NIR optical windows for imaging of bone microfractures. , 2014, , .		0
34	Ultrafast fluorescence polarization spectroscopy of near infrared dye in picosecond dynamic range: model and simulation. Proceedings of SPIE, 2014, , .	0.8	0
35	Investigation of scattering coefficients and anisotropy factors of human cancerous and normal prostate tissues using Mie theory. , 2014, , .		1
36	Differences in fluorescence profiles from breast cancer tissues due to changes in relative tryptophan content via energy transfer: tryptophan content correlates with histologic grade and tumor size but not with lymph node metastases. Journal of Biomedical Optics, 2014, 19, 125002.	1.4	35

#	Article	IF	Citations
37	Tryptophan content for monitoring breast cancer cell aggressiveness by native fluorescence spectroscopy. , 2014, , .		О
38	Deep optical imaging of tissue using the second and third near-infrared spectral windows. Journal of Biomedical Optics, 2014, 19, 056004.	1.4	299
39	Tryptophan as the fingerprint for distinguishing aggressiveness among breast cancer cell lines using native fluorescence spectroscopy. Journal of Biomedical Optics, 2014, 19, 037005.	1.4	30
40	Synthesis of dye conjugates to visualize the cancer cells using fluorescence microscopy. Applied Optics, 2014, 53, 2345.	0.9	29
41	Enhancing the depth of tissue microscope imaging using two-photon excitation of the second singlet state of fluorescent agents. Proceedings of SPIE, 2014, , .	0.8	2
42	Brain metastasis detection by resonant Raman optical biopsy method. , 2014, , .		3
43	Grading of cervical intraepithelial neoplasia using spatial frequency for optical histology. , 2014, , .		0
44	Native fluorescence spectroscopy reveals spectral differences among prostate cancer cell lines with different risk levels. Journal of Biomedical Optics, 2013, 18, 087002.	1.4	38
45	Resonance Raman and Raman Spectroscopy for Breast Cancer Detection. Technology in Cancer Research and Treatment, 2013, 12, 371-382.	0.8	93
46	Near infrared spectral polarization imaging of prostate cancer tissues using Cybesin: a receptor-targeted contrast agent. Proceedings of SPIE, 2013, , .	0.8	0
47	Synthesize dye-bioconjugates to visualize cancer cells using fluorescence microscopy. Proceedings of SPIE, 2013, , .	0.8	0
48	Review of ultrafast fluorescence polarization spectroscopy [Invited]. Applied Optics, 2013, 52, 917.	0.9	30
49	Native fluorescence spectra of human cancerous and normal breast tissues analyzed with non-negative constraint methods. Applied Optics, 2013, 52, 1293.	0.9	57
50	Spatial Frequency Analysis for Detecting Early Stage of Cancer in Human Cervical Tissues. TCRT Express, 2013, 13, 421-5.	1.5	5
51	Stokes shift spectroscopic analysis of multifluorophores for human cancer detection in breast and prostate tissues. Journal of Biomedical Optics, 2013, 18, 017005.	1.4	41
52	Optical Spectral Fingerprints of Tissues from Patients with Different Breast Cancer Histologies Using a Novel Fluorescence Spectroscopic Device. Technology in Cancer Research and Treatment, 2013, 12, 455-461.	0.8	42
53	Two-photon excitation microscopy using the second singlet state of fluorescent agents within the $\hat{a} \in \mathbb{C}$ within th	1.1	45
54	Resonance Raman spectroscopy for human cancer detection of key molecules with clinical diagnosis. , 2013, , .		1

#	Article	IF	CITATIONS
55	Optical Detection of Meat Spoilage Using Fluorescence Spectroscopy with Selective Excitation Wavelength. Applied Spectroscopy, 2013, 67, 210-213.	1.2	46
56	The efficacy of Stokes Shift Spectroscopy for detecting prostate and breast cancer tissues. , 2013, , .		0
57	Investigation of native fluorescence spectral difference among prostate cancer cell lines with different risk levels. , 2013, , .		0
58	Characterization and three-dimensional localization of cancerous prostate tissue using backscattering scanning polarization imaging and independent component analysis. Journal of Biomedical Optics, 2012, 17, 081419.	1.4	33
59	Brain cancer probed by native fluorescence and stokes shift spectroscopy. , 2012, , .		1
60	Human brain cancer studied by resonance Raman spectroscopy. Journal of Biomedical Optics, 2012, 17, 116021.	1.4	131
61	Stokes shift spectroscopy highlights differences of cancerous and normal human tissues. Optics Letters, 2012, 37, 3360.	1.7	59
62	Compact Stokes shift and fluorescence spectroscopic diagnostics LED ratiometer unit with no moving parts for cancer detection. , 2012 , , .		3
63	Determination of Optical Coefficients and Fractal Dimensional Parameters of Cancerous and Normal Prostate Tissues. Applied Spectroscopy, 2012, 66, 828-834.	1.2	52
64	Biomarkers spectral subspace for cancer detection. Journal of Biomedical Optics, 2012, 17, 107005.	1.4	11
65	Study of rotational dynamics of receptor-targeted contrast agents in cancerous and normal prostate tissues using time-resolved picosecond emission spectroscopy. Applied Optics, 2011, 50, 1312.	2.1	23
66	Clean image synthesis and target numerical marching for optical imaging with backscattering light. Biomedical Optics Express, 2011, 2, 850.	1.5	23
67	Changes of collagen and nicotinamide adenine dinucleotide in human cancerous and normal prostate tissues studied using native fluorescence spectroscopy with selective excitation wavelength. Journal of Biomedical Optics, 2010, 15, 047008.	1.4	66