
Kanagasundar Appusamy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11533166/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magnesium as a Novel UV Plasmonic Material for Fluorescence Decay Rate Engineering in Free Solution. Journal of Physical Chemistry C, 2017, 121, 11650-11657.	3.1	37
2	Low-loss magnesium films for plasmonics. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2014, 181, 77-85.	3.5	22
3	Mg thin films with Al seed layers for UV plasmonics. Journal Physics D: Applied Physics, 2015, 48, 184009.	2.8	18
4	Influence of aluminum content on plasmonic behavior of Mg-Al alloy thin films. Optical Materials Express, 2016, 6, 3180.	3.0	12
5	Effect of Ga Implantation and Hole Geometry on Light Transmission through Nanohole Arrays in Al and Mg. Journal of Physical Chemistry C, 2018, 122, 10535-10544.	3.1	12
6	Electrolytic reduction of liquid metal oxides and its application to reconfigurable structured devices. Scientific Reports, 2015, 5, 8637.	3.3	10
7	Gallium platinum alloys – a new material system for UV plasmonics. Optical Materials Express, 2017, 7, 2880.	3.0	5
8	UV-visible transmission through nanohole arrays in aluminum and magnesium. Proceedings of SPIE, 2016, , .	0.8	1