Wolfgang Damm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11532879/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	OPLS4: Improving Force Field Accuracy on Challenging Regimes of Chemical Space. Journal of Chemical Theory and Computation, 2021, 17, 4291-4300.	2.3	582
2	Advancing Free-Energy Calculations of Metalloenzymes in Drug Discovery via Implementation of LFMM Potentials. Journal of Chemical Theory and Computation, 2020, 16, 6926-6937.	2.3	8
3	OPLS3e: Extending Force Field Coverage for Drug-Like Small Molecules. Journal of Chemical Theory and Computation, 2019, 15, 1863-1874.	2.3	698
4	High Energy Density in Azobenzene-based Materials for Photo-Thermal Batteries via Controlled Polymer Architecture and Polymer-Solvent Interactions. Scientific Reports, 2017, 7, 17773.	1.6	31
5	OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. Journal of Chemical Theory and Computation, 2016, 12, 281-296.	2.3	2,349
6	Accurate and Reliable Prediction of Relative Ligand Binding Potency in Prospective Drug Discovery by Way of a Modern Free-Energy Calculation Protocol and Force Field. Journal of the American Chemical Society, 2015, 137, 2695-2703.	6.6	931
7	Improving the Prediction of Absolute Solvation Free Energies Using the Next Generation OPLS Force Field. Journal of Chemical Theory and Computation, 2012, 8, 2553-2558.	2.3	239
8	Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field. Journal of Chemical Theory and Computation, 2010, 6, 1509-1519.	2.3	1,360
9	Explicit-Solvent Molecular Dynamics Simulations of the Polysaccharide Schizophyllan in Water. Biophysical Journal, 2007, 93, 442-455.	0.2	61
10	Integrated Modeling Program, Applied Chemical Theory (IMPACT). Journal of Computational Chemistry, 2005, 26, 1752-1780.	1.5	1,194
11	A Polarizable Force Field and Continuum Solvation Methodology for Modeling of Proteinâ^'Ligand Interactions. Journal of Chemical Theory and Computation, 2005, 1, 694-715.	2.3	100
12	Explicit-Solvent Molecular Dynamics Simulations of the β(1→3)- and β(1→6)-Linked Disaccharides β-Laminarabiose and β-Gentiobiose in Water. Journal of Physical Chemistry B, 2004, 108, 5815-5826.	1.2	32
13	Polarizable force fields. Current Opinion in Structural Biology, 2001, 11, 236-242.	2.6	474
14	Reversible peptide folding: Dependence on molecular force field used. Journal of Computational Chemistry, 2000, 21, 774-787.	1.5	19
15	Mechanistic Studies in the Radical Induced DNA Strand Cleavage—Formation and Reactivity of the Radical Cation Intermediate. Tetrahedron, 2000, 56, 4117-4128.	1.0	27
16	OPLS all-atom force field for carbohydrates. Journal of Computational Chemistry, 1997, 18, 1955-1970.	1.5	619
17	OPLS all-atom force field for carbohydrates. , 1997, 18, 1955.		2

OPLS all-atom force field for carbohydrates. , 1997, 18, 1955.

WOLFGANG DAMM

#	Article	IF	CITATIONS
19	The Curtin-Hammett principle: Stereoselective radical additions to alkenes. Tetrahedron Letters, 1996, 37, 351-354.	0.7	44
20	Stereoselective reactions of \hat{I}_{\pm} -imide substituted radicals. Tetrahedron, 1994, 50, 7029-7048.	1.0	19
21	Transition states for the hydrogen atom abstraction reaction by ga-oxygen substituted radicals: Felkin-Anh Rule in Radical Chemistry. Tetrahedron Letters, 1993, 34, 431-434.	0.7	29
22	The Felkin-Anh Rule in Radical Chemistry: 1,2-Stereoinduction in Radical Addition to Alkenes. Synlett, 1992, 1992, 441-443.	1.0	24
23	1,2-Stereoinduction in acyclic radicals: allylic strain effects. Tetrahedron Letters, 1992, 33, 1863-1866.	0.7	62
24	Cram's rule for radical reactions. Tetrahedron Letters, 1991, 32, 6097-6100.	0.7	49