P G Whitehead

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11531073/publications.pdf

Version: 2024-02-01

159525 143943 3,376 61 30 57 citations h-index g-index papers 63 63 63 3615 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A review of the potential impacts of climate change on surface water quality. Hydrological Sciences Journal, 2009, 54, 101-123.	1.2	875
2	A nitrogen model for European catchments: INCA, new model structure and equations. Hydrology and Earth System Sciences, 2002, 6, 559-582.	1.9	242
3	Modeling the mechanisms that control in-stream dissolved organic carbon dynamics in upland and forested catchments. Water Resources Research, 2007, 43, .	1.7	162
4	The Integrated Catchments model of Phosphorus dynamics (INCA-P), a new approach for multiple source assessment in heterogeneous river systems: model structure and equations. Hydrology and Earth System Sciences, 2002, 6, 583-606.	1,9	137
5	Impacts of climate change and socio-economic scenarios on flow and water quality of the Ganges, Brahmaputra and Meghna (GBM) river systems: low flow and flood statistics. Environmental Sciences: Processes and Impacts, 2015, 17, 1057-1069.	1.7	109
6	Impacts of climate change on in-stream nitrogen in a lowland chalk stream: An appraisal of adaptation strategies. Science of the Total Environment, 2006, 365, 260-273.	3.9	103
7	PERSiST: a flexible rainfall-runoff modelling toolkit for use with the INCA family of models. Hydrology and Earth System Sciences, 2014, 18, 855-873.	1.9	84
8	The water quality of the River Kennet: initial observations on a lowland chalk stream impacted by sewage inputs and phosphorus remediation. Science of the Total Environment, 2000, 251-252, 477-495.	3.9	81
9	Dynamic modeling of the Ganga river system: impacts of future climate and socio-economic change on flows and nitrogen fluxes in India and Bangladesh. Environmental Sciences: Processes and Impacts, 2015, 17, 1082-1097.	1.7	73
10	On modeling the mechanisms that control in-stream phosphorus, macrophyte, and epiphyte dynamics: An assessment of a new model using general sensitivity analysis. Water Resources Research, 2001, 37, 2777-2792.	1.7	67
11	Steady state and dynamic modelling of nitrogen in the River Kennet: impacts of land use change since the 1930s. Science of the Total Environment, 2002, 282-283, 417-434.	3.9	63
12	Potential impacts of climate change on water quality and ecology in six UK rivers. Hydrology Research, 2009, 40, 113-122.	1.1	60
13	Title is missing!. Hydrobiologia, 1997, 349, 39-46.	1.0	57
14	On modelling the flow controls on macrophyte and epiphyte dynamics in a lowland permeable catchment: the River Kennet, southern England. Science of the Total Environment, 2002, 282-283, 375-393.	3.9	56
15	Bioremediation of acid mine drainage: an introduction to the Wheal Jane wetlands project. Science of the Total Environment, 2005, 338, 15-21.	3.9	55
16	Modelling heavy metals in the Buriganga River System, Dhaka, Bangladesh: Impacts of tannery pollution control. Science of the Total Environment, 2019, 697, 134090.	3.9	55
17	Preliminary empirical models of the historical and future impact of acidification on the ecology of Welsh streams. Freshwater Biology, 1988, 20, 127-140.	1.2	53
18	On modelling the impacts of phosphorus stripping at sewage works on in-stream phosphorus and macrophyte/epiphyte dynamics: a case study for the River Kennet. Science of the Total Environment, 2002, 282-283, 395-415.	3.9	53

#	Article	IF	Citations
19	Macronutrient cycles and climate change: Key science areas and an international perspective. Science of the Total Environment, 2012, 434, 13-17.	3.9	52
20	A cost-effectiveness analysis of water security and water quality: impacts of climate and land-use change on the River Thames system. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120413.	1.6	52
21	Water quality modelling of the Mekong River basin: Climate change and socioeconomics drive flow and nutrient flux changes to the Mekong Delta. Science of the Total Environment, 2019, 673, 218-229.	3.9	48
22	The interactive responses of water quality and hydrology to changes in multiple stressors, and implications for the long-term effective management of phosphorus. Science of the Total Environment, 2013, 454-455, 230-244.	3.9	47
23	Impacts of climate change scenarios on dissolved oxygen in the River Thames, UK. Hydrology Research, 2009, 40, 138-152.	1.1	42
24	Restoring acidified streams in upland Wales: A modelling comparison of the chemical and biological effects of liming and reduced sulphate deposition. Environmental Pollution, 1990, 64, 67-85.	3.7	41
25	River toxicity assessment using molecular biosensors: Heavy metal contamination in the Turag-Balu-Buriganga river systems, Dhaka, Bangladesh. Science of the Total Environment, 2020, 703, 134760.	3.9	40
26	Modelling phosphorus dynamics in multi-branch river systems: A study of the Black River, Lake Simcoe, Ontario, Canada. Science of the Total Environment, 2011, 412-413, 315-323.	3.9	37
27	Hydrological studies of schistosomiasis transport in Sichuan Province, China. Science of the Total Environment, 1998, 216, 193-203.	3.9	36
28	Assessing the impacts of climate change and socio-economic changes on flow and phosphorus flux in the Ganga river system. Environmental Sciences: Processes and Impacts, 2015, 17, 1098-1110.	1.7	35
29	The prediction and management of aquatic nitrogen pollution across Europe: an introduction to the Integrated Nitrogen in European Catchments project (INCA). Hydrology and Earth System Sciences, 2002, 6, 299-313.	1.9	34
30	Modelling long term stream acidification trends in upland wales at plynlimon. Hydrological Processes, 1988, 2, 357-368.	1.1	32
31	Modelling nitrogen dynamics and distributions in the River Tweed, Scotland: an application of the INCA model. Hydrology and Earth System Sciences, 2002, 6, 433-454.	1.9	32
32	Excess nitrogen leaching and C/N decline in the Tillingbourne catchment, southern England: INCA process modelling for current and historic time series. Hydrology and Earth System Sciences, 2002, 6, 455-466.	1.9	32
33	An INCA model for pathogens in rivers and catchments: Model structure, sensitivity analysis and application to the River Thames catchment, UK. Science of the Total Environment, 2016, 572, 1601-1610.	3.9	31
34	Fate and transport of polychlorinated biphenyls (PCBs) in the River Thames catchment – Insights from a coupled multimedia fate and hydrobiogeochemical transport model. Science of the Total Environment, 2016, 572, 1461-1470.	3.9	29
35	Chemical behaviour of the Wheal Jane bioremediation system. Science of the Total Environment, 2005, 338, 41-51.	3.9	28
36	INCA Modelling of the Lee System: strategies for the reduction of nitrogen loads. Hydrology and Earth System Sciences, 2002, 6, 467-484.	1.9	24

3

#	Article	IF	Citations
37	Using the INCA-Hg model of mercury cycling to simulate total and methyl mercury concentrations in forest streams and catchments. Science of the Total Environment, 2012, 424, 219-231.	3.9	24
38	Flow pathways and nutrient transport mechanisms drive hydrochemical sensitivity to climate change across catchments with different geology and topography. Hydrology and Earth System Sciences, 2014, 18, 5125-5148.	1.9	24
39	Optimizing land management strategies for maximum improvements in lake dissolved oxygen concentrations. Science of the Total Environment, 2019, 652, 382-397.	3.9	24
40	Rainfall runoff modelling of the Upper Ganga and Brahmaputra basins using PERSiST. Environmental Sciences: Processes and Impacts, 2015, 17, 1070-1081.	1.7	22
41	Simulating metals and mine discharges in river basins using a new integrated catchment model for metals: pollution impacts and restoration strategies in the Aries-Mures river system in Transylvania, Romania. Hydrology Research, 2009, 40, 323-346.	1.1	21
42	Estimating uncertainty in terrestrial critical loads and their exceedances at four sites in the UK. Science of the Total Environment, 2007, 382, 199-213.	3.9	19
43	Modelling metaldehyde in catchments: a River Thames case-study. Environmental Sciences: Processes and Impacts, 2017, 19, 586-595.	1.7	19
44	The Wheal Jane wetlands model for bioremediation of acid mine drainage. Science of the Total Environment, 2005, 338, 125-135.	3.9	17
45	The potential impacts of climate change on hydropower generation in Mid Wales. Hydrology Research, 2013, 44, 495-505.	1.1	17
46	Distributed and dynamic modelling of hydrology, phosphorus and ecology in the Hampshire Avon and Blashford Lakes: Evaluating alternative strategies to meet WFD standards. Science of the Total Environment, 2014, 481, 157-166.	3.9	17
47	Quantifying Uncertainty in Critical Loads: (B) Acidity Mass Balance Critical Loads on a Sensitive Site. Water, Air, and Soil Pollution, 2006, 169, 25-46.	1.1	16
48	Nitrous Oxide Emissions from Two Riparian Ecosystems: Key Controlling Variables. Water, Air and Soil Pollution, 2004, 4, 427-436.	0.8	15
49	Reconciling observed and modelled phytoplankton dynamics in a major lowland UK river, the Thames. Hydrology Research, 2012, 43, 576-588.	1.1	12
50	Integrated Nitrogen CAtchment model (INCA) applied to a tropical catchment in the Atlantic Forest, São Paulo, Brazil. Hydrology and Earth System Sciences, 2007, 11, 614-622.	1.9	10
51	Modelling acidification at Beacon Hill—a low rainfall, high pollutant deposition site in Central England. Environmental Pollution, 1993, 79, 277-281.	3.7	9
52	The effectiveness and resilience of phosphorus management practices in the Lake Simcoe watershed, Ontario, Canada. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2390-2409.	1.3	8
53	INCA: summary and conclusions. Hydrology and Earth System Sciences, 2002, 6, 607-615.	1.9	7
54	Impacts of forestry on nitrogen in upland and lowland catchments: a comparison of the River Severn at Plynlimon in mid-Wales and the Bedford Ouse in south-east England using the INCA Model. Hydrology and Earth System Sciences, 2004, 8, 533-544.	1.9	7

P G WHITEHEAD

#	Article	IF	CITATIONS
55	Modelling impacts of seasonal wastewater treatment plant effluent permits and biosolid substitution for phosphorus management in catchments and river systems. Hydrology Research, 2015, 46, 313-324.	1.1	6
56	Hydrochemical modelling of acidification in Wales. Monographiae Biologicae, 1990, , 255-277.	0.1	6
57	Modelling impacts of pollution in river systems: a new dispersion model and a case study of mine discharges in the Abrud, Aries and Mures River System in Transylvania, Romania. Hydrology Research, 2009, 40, 306-322.	1.1	5
58	Bridging gaps across macronutrient cycles. Science of the Total Environment, 2016, 572, 1447-1448.	3.9	3
59	Modelling stream and soil water nitrate dynamics during experimentally increased nitrogen deposition in a coniferous forest catchment at GÃ¥rdsjA¶n, Sweden. Hydrology Research, 2009, 40, 187-197.	1.1	2
60	Modelling and reconstruction of the River Kennet palaeohydrology and hydrogeology: Silbury Hill and Avebury in 4,400 BP. Hydrology Research, 2012, 43, 551-559.	1.1	2
61	Development of a Liming Prediction Model for Llyn Brianne. Water and Environment Journal, 1999, 13, 275-279.	1.0	0