Sol A Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11531047/publications.pdf Version: 2024-02-01

SOLALEE

#	Article	IF	CITATIONS
1	Surfaceâ€Tailored Medium Entropy Alloys as Radically Low Overpotential Oxygen Evolution Electrocatalysts. Small, 2022, 18, e2105611.	10.0	36
2	Controlled Band Offsets in Ultrathin Hematite for Enhancing the Photoelectrochemical Water Splitting Performance of Heterostructured Photoanodes. ACS Applied Materials & Interfaces, 2022, 14, 7788-7795.	8.0	35
3	Multifunctional nano-heterogeneous Ni(OH)2/NiFe catalysts on silicon photoanode toward efficient water and urea oxidation. Applied Catalysis B: Environmental, 2022, 317, 121765.	20.2	28
4	Grain Boundaries Boost Oxygen Evolution Reaction in NiFe Electrocatalysts. Small Methods, 2021, 5, 2000755.	8.6	22
5	Tailored Graphene Micropatterns by Waferâ€Scale Direct Transfer for Flexible Chemical Sensor Platform. Advanced Materials, 2021, 33, e2004827.	21.0	40
6	Hierarchical Nanoporous BiVO ₄ Photoanodes with High Charge Separation and Transport Efficiency for Water Oxidation. ACS Applied Materials & Interfaces, 2021, 13, 14291-14301.	8.0	22
7	Surface-tailored graphene channels. Npj 2D Materials and Applications, 2021, 5, .	7.9	12
8	Boosting Unassisted Alkaline Solar Water Splitting Using Silicon Photocathode with TiO ₂ Nanorods Decorated by Edgeâ€Rich MoS ₂ Nanoplates. Small, 2021, 17, e2103457.	10.0	35
9	Near-complete charge separation in tailored BiVO4-based heterostructure photoanodes toward artificial leaf. Applied Catalysis B: Environmental, 2021, 293, 120217.	20.2	57
10	Hydrothermally obtained type-â; heterojunction nanostructures of In2S3 / TiO2 for remarkably enhanced photoelectrochemical water splitting. Applied Catalysis B: Environmental, 2021, 295, 120276.	20.2	89
11	Voltage-dependent gas discrimination using self-activated graphene with Pt decoration. Sensors and Actuators B: Chemical, 2021, 349, 130696.	7.8	2
12	Boosting Unassisted Alkaline Solar Water Splitting Using Silicon Photocathode with TiO ₂ Nanorods Decorated by Edgeâ€Rich MoS ₂ Nanoplates (Small 39/2021). Small, 2021, 17, 2170206.	10.0	1
13	Nanoscale electrodeposition: Dimension control and 3D conformality. Exploration, 2021, 1, .	11.0	46
14	Understanding the Enhancement of the Catalytic Properties of Goethite by Transition Metal Doping: Critical Role of O* Formation Energy Relative to OH* and OOH*. ACS Applied Energy Materials, 2020, 3, 1634-1643.	5.1	17
15	Amorphous Cobalt Oxide Nanowalls as Catalyst and Protection Layers on n-Type Silicon for Efficient Photoelectrochemical Water Oxidation. ACS Catalysis, 2020, 10, 420-429.	11.2	34
16	Si-Based Water Oxidation Photoanodes Conjugated with Earth-Abundant Transition Metal-Based Catalysts. , 2020, 2, 107-126.		35
17	Resistive Switching Memory: Leadâ€Free Dualâ€Phase Halide Perovskites for Preconditioned Conductingâ€Bridge Memory (Small 41/2020). Small, 2020, 16, 2070228.	10.0	0
18	Atomic Layer Deposition Seeded Growth of Rutile SnO ₂ Nanowires on Versatile Conducting Substrates. ACS Applied Materials & Interfaces, 2020, 12, 48486-48494.	8.0	16

SOL A LEE

#	Article	IF	CITATIONS
19	Enhanced Oxygen Evolution Electrocatalysis in Strained A-Site Cation Deficient LaNiO ₃ Perovskite Thin Films. Nano Letters, 2020, 20, 8040-8045.	9.1	61
20	Leadâ€Free Dualâ€Phase Halide Perovskites for Preconditioned Conductingâ€Bridge Memory. Small, 2020, 16, e2003225.	10.0	27
21	Stabilization of NiFe Layered Double Hydroxides on n-Si by an Activated TiO ₂ Interlayer for Efficient Solar Water Oxidation. ACS Applied Energy Materials, 2020, 3, 12298-12307.	5.1	17
22	Electrodeposited Heterogeneous Nickel-Based Catalysts on Silicon for Efficient Sunlight-Assisted Water Splitting. Cell Reports Physical Science, 2020, 1, 100219.	5.6	23
23	All-Solution-Processed BiVO ₄ /TiO ₂ Photoanode with NiCo ₂ O ₄ Nanofiber Cocatalyst for Enhanced Solar Water Oxidation. ACS Applied Energy Materials, 2020, 3, 5646-5656.	5.1	23
24	Photoelectrochemical Reduction of CO2 to Syngas by Reduced Ag Catalysts on Si Photocathodes. Applied Sciences (Switzerland), 2020, 10, 3487.	2.5	14
25	Influence of C3N4 Precursors on Photoelectrochemical Behavior of TiO2/C3N4 Photoanode for Solar Water Oxidation. Energies, 2020, 13, 974.	3.1	18
26	Stabilization of FCC Phase Using Mn Incorporation in Nanograin Invar Alloy Foils Fabricated by Electroforming. Electronic Materials Letters, 2020, 16, 188-194.	2.2	2
27	Water Splitting Exceeding 17% Solar-to-Hydrogen Conversion Efficiency Using Solution-Processed Ni-Based Electrocatalysts and Perovskite/Si Tandem Solar Cell. ACS Applied Materials & Interfaces, 2019, 11, 33835-33843.	8.0	67
28	Dualâ€Phase Allâ€Inorganic Cesium Halide Perovskites for Conductingâ€Bridge Memoryâ€Based Artificial Synapses. Advanced Functional Materials, 2019, 29, 1906686.	14.9	79
29	All-Solution-Processed WO ₃ /BiVO ₄ Core–Shell Nanorod Arrays for Highly Stable Photoanodes. ACS Applied Materials & Interfaces, 2019, 11, 20004-20012.	8.0	57
30	Controlled Synthesis of Vertically Aligned SnO ₂ Nanograss-Structured Thin Films for SnO ₂ /BiVO ₄ Core–Shell Heterostructures with Highly Enhanced Photoelectrochemical Properties. Chemistry of Materials, 2018, 30, 8501-8509.	6.7	40
31	Triple Planar Heterojunction of SnO2/WO3/BiVO4 with Enhanced Photoelectrochemical Performance under Front Illumination. Applied Sciences (Switzerland), 2018, 8, 1765.	2.5	17
32	Comprehensive Study on the Morphology Control of TiO ₂ Nanorods on Foreign Substrates by the Hydrothermal Method. Crystal Growth and Design, 2018, 18, 6504-6512.	3.0	26
33	Tailored NiO _{<i>x</i>} /Ni Cocatalysts on Silicon for Highly Efficient Water Splitting Photoanodes via Pulsed Electrodeposition. ACS Catalysis, 2018, 8, 7261-7269.	11.2	85
34	Substantially enhanced front illumination photocurrent in porous SnO ₂ nanorods/networked BiVO ₄ heterojunction photoanodes. Journal of Materials Chemistry A, 2018, 6, 14633-14643.	10.3	30