
Philip Hallenborg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11530812/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hepatic MDM2 Causes Metabolic Associated Fatty Liver Disease by Blocking Triglycerideâ€VLDL Secretion via ApoB Degradation. Advanced Science, 2022, 9, e2200742.	11.2	9
2	Adipose MDM2 regulates systemic insulin sensitivity. Scientific Reports, 2021, 11, 21839.	3.3	7
3	Phosphoproteomic profiling reveals a defined genetic program for osteoblastic lineage commitment of human bone marrow–derived stromal stem cells. Genome Research, 2020, 30, 127-137.	5.5	10
4	Multi-omics characterization of a diet-induced obese model of non-alcoholic steatohepatitis. Scientific Reports, 2020, 10, 1148.	3.3	39
5	UbiSite approach for comprehensive mapping of lysine and N-terminal ubiquitination sites. Nature Structural and Molecular Biology, 2018, 25, 631-640.	8.2	341
6	The Dysfunctional MDM2–p53 Axis in Adipocytes Contributes to Aging-Related Metabolic Complications by Induction of Lipodystrophy. Diabetes, 2018, 67, 2397-2409.	0.6	36
7	The MDM2–p53–pyruvate carboxylase signalling axis couples mitochondrial metabolism to glucose-stimulated insulin secretion in pancreatic β-cells. Nature Communications, 2016, 7, 11740.	12.8	47
8	p53 regulates expression of uncoupling protein 1 through binding and repression of PPARÎ ³ coactivator-1α. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E116-E128.	3.5	26
9	The elusive endogenous adipogenic PPARγ agonists: Lining up the suspects. Progress in Lipid Research, 2016, 61, 149-162.	11.6	32
10	PPARÎ ³ ligand production is tightly linked to clonal expansion during initiation of adipocyte differentiation. Journal of Lipid Research, 2014, 55, 2491-2500.	4.2	19
11	StUbEx: Stable Tagged Ubiquitin Exchange System for the Global Investigation of Cellular Ubiquitination. Journal of Proteome Research, 2014, 13, 4192-4204.	3.7	20
12	Nutritional Regulation of Bile Acid Metabolism Is Associated with Improved Pathological Characteristics of the Metabolic Syndrome. Journal of Biological Chemistry, 2011, 286, 28382-28395.	3.4	55
13	UCP1 Induction during Recruitment of Brown Adipocytes in White Adipose Tissue Is Dependent on Cyclooxygenase Activity. PLoS ONE, 2010, 5, e11391.	2.5	174
14	Epidermis-Type Lipoxygenase 3 Regulates Adipocyte Differentiation and Peroxisome Proliferator-Activated Receptor Î ³ Activity. Molecular and Cellular Biology, 2010, 30, 4077-4091.	2.3	45
15	ADD1/SREBP1c activates the PGC1-α promoter in brown adipocytes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 421-429.	2.4	20
16	Fish protein hydrolysate elevates plasma bile acids and reduces visceral adipose tissue mass in rats. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 254-262.	2.4	98
17	The tumor suppressors pRB and p53 as regulators of adipocyte differentiation and function. Expert Opinion on Therapeutic Targets, 2009, 13, 235-246.	3.4	56
18	Cyclic AMP (cAMP)-Mediated Stimulation of Adipocyte Differentiation Requires the Synergistic Action of Epac- and cAMP-Dependent Protein Kinase-Dependent Processes. Molecular and Cellular Biology, 2008, 28, 3804-3816.	2.3	136

#	Article	IF	CITATIONS
19	Role of epidermis-type lipoxygenases for skin barrier function and adipocyte differentiation. Prostaglandins and Other Lipid Mediators, 2007, 82, 128-134.	1.9	37
20	Retinoblastoma protein functions as a molecular switch determining white versus brown adipocyte differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4112-4117.	7.1	244
21	Adipocyte differentiation of 3T3-L1 preadipocytes is dependent on lipoxygenase activity during the initial stages of the differentiation process. Biochemical Journal, 2003, 375, 539-549.	3.7	118