Nejat Duzgunes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11530363/publications.pdf Version: 2024-02-01

NEIAT DUZCHNES

#	Article	lF	CITATIONS
1	Photocytotoxicity of liposomal zinc phthalocyanine in oral squamous cell carcinoma and pharyngeal carcinoma cells. Therapeutic Delivery, 2020, 11, 547-556.	1.2	4
2	Eradication of Human Immunodeficiency Virus Type-1 (HIV-1)-Infected Cells. Pharmaceutics, 2019, 11, 255.	2.0	6
3	Suicide Gene Therapy of Oral Squamous Cell Carcinoma and Cervical Carcinoma In Vitro. Methods in Molecular Biology, 2019, 1895, 177-184.	0.4	4
4	Nonâ€viral suicide gene therapy in cervical, oral and pharyngeal carcinoma cells with CMV―and EEVâ€plasmids. Journal of Gene Medicine, 2018, 20, e3054.	1.4	5
5	A nonviral vector with transfection activity comparable with adenoviral transduction. Therapeutic Delivery, 2016, 7, 739-749.	1.2	4
6	Phototoxicity of Liposomal Zn- and Al-phthalocyanine Against Cervical and Oral Squamous Cell Carcinoma Cells In Vitro. Medical Science Monitor Basic Research, 2016, 22, 156-164.	2.6	19
7	Gene delivery to carcinoma cells via novel non-viral vectors: Nanoparticle tracking analysis and suicide gene therapy. European Journal of Pharmaceutical Sciences, 2014, 60, 72-79.	1.9	12
8	Lipopolyplexes as Nanomedicines for Therapeutic Gene Delivery. Methods in Enzymology, 2012, 509, 327-338.	0.4	15
9	Genetic Nanomedicine. Methods in Enzymology, 2012, 509, 355-367.	0.4	11
10	Gene delivery by lipoplexes and polyplexes. European Journal of Pharmaceutical Sciences, 2010, 40, 159-170.	1.9	542
11	Methods to Monitor Liposome Fusion, Permeability, and Interaction with Cells. Methods in Molecular Biology, 2010, 606, 209-232.	0.4	19
12	Fluorescence Methods for Evaluating Lipoplex-Mediated Gene Delivery. Methods in Molecular Biology, 2010, 606, 425-437.	0.4	2
13	Chapter 14 Targeted Lipoplexes for siRNA Delivery. Methods in Enzymology, 2009, 465, 267-287.	0.4	14
14	Serum decreases the size of Metafectene-and Genejammer-DNA complexes but does not affect significantly their transfection activity in SCCVII murine squamous cell carcinoma cells. Cellular and Molecular Biology Letters, 2006, 11, 171-90.	2.7	19
15	Cationic liposomes for gene delivery. Expert Opinion on Drug Delivery, 2005, 2, 237-254.	2.4	234
16	Liposome-Encapsulated Antibiotics. Methods in Enzymology, 2005, 391, 261-291.	0.4	54
17	Delivery of Antiviral Agents in Liposomes. Methods in Enzymology, 2005, 391, 351-373.	0.4	18
18	Serum-resistant gene transfer to oral cancer cells by Metafectene and GeneJammer: application to HSV-tk/ganciclovir-mediated cytotoxicity. Cellular and Molecular Biology Letters, 2005, 10, 455-70	2.7	16

NEJAT DUZGUNES

#	Article	IF	CITATIONS
19	Sterically Stabilized pH-Sensitive Liposomes. Methods in Enzymology, 2004, 387, 134-147.	0.4	19
20	On the formulation of pH-sensitive liposomes with long circulation times. Advanced Drug Delivery Reviews, 2004, 56, 947-965.	6.6	440
21	Comparison of the shape parameters of DNA–cationic lipid complexes and model polyelectrolyte–lipid complexes. Journal of Colloid and Interface Science, 2004, 276, 317-322.	5.0	4
22	Gene Delivery by Cationic Liposome–DNA Complexes Containing Transferrin or Serum Albumin. Methods in Enzymology, 2003, 373, 369-383.	0.4	8
23	Biophysical Characterization of Cationic Liposome–DNA Complexes and their Interaction with Cells. Methods in Enzymology, 2003, 373, 298-312.	0.4	4
24	Liposome-Mediated Gene Delivery: Dependence on Lipid Structure, Glycolipid-Mediated Targeting, and Immunological Properties. Methods in Enzymology, 2003, 373, 433-465.	0.4	9
25	Fluorescence Assays for Liposome Fusion. Methods in Enzymology, 2003, 372, 260-274.	0.4	22
26	Cationic Liposomes for Gene Delivery: Novel Cationic Lipids and Enhancement by Proteins and Peptides. Current Medicinal Chemistry, 2003, 10, 1213-1220.	1.2	75
27	On the mechanisms of internalization and intracellular delivery mediated by pH-sensitive liposomes. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1515, 23-37.	1.4	126
28	Cationic lipid–DNA complexes in gene delivery: from biophysics to biological applications. Advanced Drug Delivery Reviews, 2001, 47, 277-294.	6.6	346
29	Delivery of novel macromolecular drugs against HIV-1. Expert Opinion on Biological Therapy, 2001, 1, 949-970.	1.4	11
30	Human serum albumin enhances DNA transfection by lipoplexes and confers resistance to inhibition by serum. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1463, 459-469.	1.4	127
31	Mechanisms and kinetics of liposome–cell interactions. Advanced Drug Delivery Reviews, 1999, 40, 3-18.	6.6	213
32	Liposome-mediated delivery of antiviral agents to human immunodeficiency virus-infected cells. Molecular Membrane Biology, 1999, 16, 111-118.	2.0	44
33	Interaction of cationic liposomes and their DNA complexes with monocytic leukemia cells. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1418, 71-84.	1.4	111
34	Gene delivery mediated by cationic liposomes: from biophysical aspects to enhancement of transfection. Molecular Membrane Biology, 1999, 16, 103-109.	2.0	73
35	Transfection of human macrophages by lipoplexes via the combined use of transferrin and pH-sensitive peptides. Journal of Leukocyte Biology, 1999, 65, 270-279.	1.5	70
36	Delivery of an anti-HIV-1 ribozyme into HIV-infected cells via cationic liposomes. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1372, 55-68.	1.4	31

NEJAT DUZGUNES

#	Article	IF	CITATIONS
37	Treatment of human immunodeficiency virus, Mycobacterium avium and Mycobacterium tuberculosis infections by liposome-encapsulated drugs**This chapter is dedicated to the memories of my father Professor Orhan Düzgüneş, and my father-in-law Professor John Flasher , 1998, , 189-219.		2
38	Sterically Stabilized pH-sensitive Liposomes, INTRACELLULAR DELIVERY OF AQUEOUS CONTENTS AND PROLONGED CIRCULATION IN VIVO. Journal of Biological Chemistry, 1997, 272, 2382-2388.	1.6	208
39	Liposome-mediated therapy of human immunodeficiency virus type-1 and mycobacterium infections. Journal of Liposome Research, 1995, 5, 669-691.	1.5	8
40	Molecular Mechanisms of Membrane Fusion. , 1995, , 97-129.		3
41	Long-Term Noncytopathic Productive Infection of the Human Monocytic Leukemia Cell Line THP-1 by Human Immunedeficiency Virus Type 1 (HIV-1111B). Virology, 1993, 193, 877-887.	1.1	24
42	A common mechanism for influenza virus fusion activity and inactivation. Biochemistry, 1993, 32, 2771-2779.	1.2	70
43	[23] Intracellular delivery of nucleic acids and transcription factors by cationic liposomes. Methods in Enzymology, 1993, 221, 303-306.	0.4	51
44	[7] Synthetic peptides as probes of function of viral envelope proteins. Methods in Enzymology, 1993, 221, 82-95.	0.4	1
45	Fusion of Sendai virus with human HL-60 and CEM cells: different kinetics of fusion for two isolates. Biochimica Et Biophysica Acta - Biomembranes, 1991, 1070, 446-454.	1.4	19
46	Fusion of enveloped viruses with cells and liposomes. Cell Biophysics, 1990, 17, 181-201.	0.4	50
47	Molecular mechanisms of calcium-induced membrane fusion. Journal of Bioenergetics and Biomembranes, 1990, 22, 157-179.	1.0	213
48	Fusion of liposomes containing a novel cationic lipid, N-[2,3-(dioleyloxy)propyl]-N,N,N-trimethylammonium: induction by multivalent anions and asymmetric fusion with acidic phospholipid vesicles. Biochemistry, 1989, 28, 9179-9184.	1.2	130
49	Cholesterol affects divalent cation-induced fusion and isothermal phase transitions of phospholipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 1988, 946, 405-416.	1.4	14
50	Why Fusion Assays Disagree. , 1988, , 543-555.		8
51	Lipid mixing during membrane aggregation and fusion: why fusion assays disagree. Biochemistry, 1987, 26, 8435-8442.	1.2	162
52	Fusion of Phospholipid Vesicles Induced by Divalent Cations and Protons. , 1987, , 241-267.		11
53	Protein Modulation of Liposome Fusion. , 1987, , 269-284.		4
54	Membrane Fusion. Sub-Cellular Biochemistry, 1985, 11, 195-286.	1.0	84

NEJAT DUZGUNES

#	Article	IF	CITATIONS
55	Proton-induced fusion of oleic acid-phosphatidylethanolamine liposomes. Biochemistry, 1985, 24, 3091-3098.	1.2	208
56	Effects of replacement of the hydroxyl group of cholesterol and tocopherol on the thermotropic behavior of phospholipid membranes. Biochemistry, 1985, 24, 1646-1653.	1.2	111
57	Modulation of membrane fusion by membrane fluidity: temperature dependence of divalent cation induced fusion of phosphatidylserine vesicles. Biochemistry, 1985, 24, 8-14.	1.2	104
58	pH-sensitive liposomes mediate cytoplasmic delivery of encapsulated macromolecules. FEBS Letters, 1985, 179, 148-154.	1.3	230
59	Control of Membrane Fusion by Divalent Cations, Phospholipid Head-Groups and Proteins. , 1985, , 193-218.		12
60	Modulation of membrane fusion by ionotropic and thermotropic phase transitions. Biochemistry, 1984, 23, 3486-3494.	1.2	84
61	Lectins facilitate calcium-induced fusion of phospholipid vesicles containing glycosphingolipids. FEBS Letters, 1984, 173, 80-84.	1.3	20
62	Polyamines as modulators of membrane fusion: aggregation and fusion of liposomes. Biochemistry, 1983, 22, 6134-6140.	1.2	87
63	Retention of aqueous contents during divalent cation-induced fusion of phospholipid vesicles. Biochimica Et Biophysica Acta - Biomembranes, 1983, 734, 309-318.	1.4	54
64	Physicochemical characterization of large unilamellar phospholipid vesicles prepared by reverse-phase evaporation. Biochimica Et Biophysica Acta - Biomembranes, 1983, 732, 289-299.	1.4	135
65	Binding of monovalent cations to phosphatidylserine and modulation of Ca2+- and Mg2+-induced vesicle fusion. Biochimica Et Biophysica Acta - Biomembranes, 1983, 735, 160-172.	1.4	51
66	Comparison of two liposome fusion assays monitoring the intermixing of aqueous contents and of membrane components. Biochimica Et Biophysica Acta - Biomembranes, 1983, 735, 173-180.	1.4	59
67	Phospholipid vesicle aggregation: effect of monovalent and divalent ions. Biochemistry, 1982, 21, 2127-2133.	1.2	147
68	Studies on the mechanism of membrane fusion. Role of head-group composition in calcium- and magnesium-induced fusion of mixed phospholipid vesicles. Biochimica Et Biophysica Acta - Biomembranes, 1981, 642, 182-195.	1.4	246
69	Control of membrane fusion by phospholipid head groups II. The role of phosphatidylethanolamine in mixtures with phosphatidate and phosphatidylinositol. Biochimica Et Biophysica Acta - Biomembranes, 1981, 649, 751-758.	1.4	105
70	Studies on the mechanism of membrane fusion: kinetics of calcium ion induced fusion of phosphatidylserine vesicles followed by a new assay for mixing of aqueous vesicle contents. Biochemistry, 1980, 19, 6011-6021.	1.2	506
71	Studies on the mechanism of membrane fusion: role of phosphate in promoting calcium ion induced fusion of phospholipid vesicles. Biochemistry, 1980, 19, 6021-6029.	1.2	105
72	Divalent cation-induced interaction of phospholipid vesicle and monolayer membranes. Biochimica Et Biophysica Acta - Biomembranes, 1979, 552, 438-449.	1.4	73