Justyna Grzelak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1152998/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of carbazole and pyrrolidine functionalization of phenanthroline ligand on ground- and excited-state properties of rhenium(I) complexes. Interplay between 3MLCT and 3IL/3ILCT. Dyes and Pigments, 2022, 200, 110113.	3.7	3
2	Carbazole effect on ground- and excited-state properties of rhenium(<scp>i</scp>) carbonyl complexes with extended <i>terpy</i> like ligands. Dalton Transactions, 2021, 50, 3943-3958.	3.3	11
3	"Small in size but mighty in force―– The first principle study of the impact of A/D units in A/D-phenyl-ï€-phenothiazine-ï€-dicyanovinyl systems on photophysical and optoelectronic properties. Dyes and Pigments, 2021, 189, 109248.	3.7	16
4	New Acceptor–Donor–Acceptor Systems Based on Bis-(Imino-1,8-Naphthalimide). Materials, 2021, 14, 2714.	2.9	6
5	Synthesis, photophysical properties and electroluminescence characterization of 1-phenyl-1H-phenanthro[9,10-d]imidazole derivatives with N-donor substituents. Dyes and Pigments, 2021, 192, 109437.	3.7	7
6	Ground- and excited-state properties of Re(I) carbonyl complexes – Effect of triimine ligand core and appended heteroaromatic groups. Dyes and Pigments, 2021, 192, 109472.	3.7	7
7	Photoluminescence enhancement of Re(<scp>i</scp>) carbonyl complexes bearing D–A and D–Ĩ€â€"A ligands. Dalton Transactions, 2020, 49, 4441-4453.	3.3	20
8	The effect of 2-, 3- and 4-pyridyl substituents on photophysics of fac-[ReCl(CO)3(n-pytpy-κ2N)] complexes: Experimental and theoretical insights. Journal of Luminescence, 2019, 209, 346-356.	3.1	8
9	Aryl substituted 2,6-di(thiazol-2-yl)pyridines –excited-state characterization and potential for OLEDs. Dyes and Pigments, 2019, 169, 89-104.	3.7	12
10	Structure-dependent and environment-responsive optical properties of the trisheterocyclic systems with electron donating amino groups. Dyes and Pigments, 2019, 166, 283-300.	3.7	25
11	Novel phenanthro[9,10-d]imidazole derivatives - effect of thienyl and 3,4-(ethylenedioxy)thienyl substituents. Synthetic Metals, 2019, 251, 40-48.	3.9	5
12	A family of solution processable ligands and their Re(I) complexes towards light emitting applications. Dyes and Pigments, 2019, 163, 86-101.	3.7	22
13	Spectrally selective fluorescence imaging of Chlorobaculum tepidum reaction centers conjugated to chelator-modified silver nanowires. Photosynthesis Research, 2018, 135, 329-336.	2.9	4
14	Energy Transfer from Photosystem I to Thermally Reduced Graphene Oxide. Materials, 2018, 11, 1567.	2.9	4
15	Wide-Field Fluorescence Microscopy of Real-Time Bioconjugation Sensing. Sensors, 2018, 18, 290.	3.8	7
16	Capturing fluorescing viruses with silver nanowires. Sensors and Actuators B: Chemical, 2018, 273, 689-695.	7.8	7
17	New donor-acceptor-donor molecules based on quinoline acceptor unit with Schiff base bridge: synthesis and characterization. Journal of Luminescence, 2017, 183, 458-469.	3.1	36
18	Cyclometalated NCN platinum(II) acetylide complexes – Synthesis, photophysics and OLEDs fabrication. Optical Materials, 2016, 62, 543-552.	3.6	4

JUSTYNA GRZELAK

#	Article	IF	CITATIONS
19	Alloyed CuInS2–ZnS nanorods: synthesis, structure and optical properties. CrystEngComm, 2015, 17, 5634-5643.	2.6	34
20	PsbS is required for systemic acquired acclimation and post-excess-light-stress optimization of chlorophyll fluorescence decay times inArabidopsis. Plant Signaling and Behavior, 2015, 10, e982018.	2.4	14
21	Extending light-harvesting of poly(3-hexylthiophene) through efficient energy transfer from infra-red absorbing nanocrystals: Single nanoparticle study. Applied Physics Letters, 2014, 105, 163114.	3.3	2
22	A plasmonic hybrid nanostructure with controlled interaction strength. Photonics Letters of Poland, 2013, 5, .	0.4	0