List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1152995/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting extracellular lectins of <i>Pseudomonas aeruginosa</i> with glycomimetic liposomes. Journal of Materials Chemistry B, 2022, 10, 537-548.	2.9	5
2	Nanoâ€inâ€Microparticles for Aerosol Delivery of Antibioticâ€Loaded, Fucoseâ€Derivatized, and Macrophageâ€Targeted Liposomes to Combat Mycobacterial Infections: In Vitro Deposition, Pulmonary Barrier Interactions, and Targeted Delivery. Advanced Healthcare Materials, 2022, 11, e2102117.	3.9	11
3	NamZ1 and NamZ2 from the Oral Pathogen Tannerella forsythia Are Peptidoglycan Processing Exo-β- <i>N</i> -Acetylmuramidases with Distinct Substrate Specificities. Journal of Bacteriology, 2022, 204, jb0059721.	1.0	1
4	β-Boronic Acid-Substituted Bodipy Dyes for Fluorescence Anisotropy Analysis of Carbohydrate Binding. Analytical Chemistry, 2022, 94, 6112-6119.	3.2	7
5	Targeting undruggable carbohydrate recognition sites through focused fragment library design. Communications Chemistry, 2022, 5, .	2.0	9
6	Protein-observed 19F NMR of LecA from <i>Pseudomonas aeruginosa</i> . Glycobiology, 2021, 31, 159-165.	1.3	12
7	Nonâ€Carbohydrate Glycomimetics as Inhibitors of Calcium(II)â€Binding Lectins. Angewandte Chemie, 2021, 133, 8185-8195.	1.6	3
8	Non arbohydrate Glycomimetics as Inhibitors of Calcium(II)â€Binding Lectins. Angewandte Chemie - International Edition, 2021, 60, 8104-8114.	7.2	17
9	Towards the sustainable discovery and development of new antibiotics. Nature Reviews Chemistry, 2021, 5, 726-749.	13.8	439
10	The exo-β-N-acetylmuramidase NamZ from Bacillus subtilis is the founding member of a family of exo-lytic peptidoglycan hexosaminidases. Journal of Biological Chemistry, 2021, 296, 100519.	1.6	8
11	A Remote Secondary Binding Pocket Promotes Heteromultivalent Targeting of DC-SIGN. Journal of the American Chemical Society, 2021, 143, 18977-18988.	6.6	15
12	Short Peptides and Their Mimetics as Potent Antibacterial Agents and Antibiotic Adjuvants. ACS Chemical Biology, 2021, 16, 2731-2745.	1.6	13
13	Targeting the Central Pocket of the Pseudomonas aeruginosa Lectin LecA. ChemBioChem, 2021, , .	1.3	12
14	Directing Drugs to Bugs: Antibiotic-Carbohydrate Conjugates Targeting Biofilm-Associated Lectins of <i>Pseudomonas aeruginosa</i> . Journal of Medicinal Chemistry, 2020, 63, 11707-11724.	2.9	28
15	A rapid synthesis of low-nanomolar divalent LecA inhibitors in four linear steps from <scp>d</scp> -galactose pentaacetate. Chemical Communications, 2020, 56, 8822-8825.	2.2	19
16	Expression, Purification, and Functional Characterization of Tectonin 2 from Laccaria bicolor: A Six-Bladed Beta-Propeller Lectin Specific for O-Methylated Glycans. Methods in Molecular Biology, 2020, 2132, 669-682.	0.4	1
17	Lectin antagonists in infection, immunity, and inflammation. Current Opinion in Chemical Biology, 2019, 53, 51-67.	2.8	48
18	Anti-biofilm Agents against <i>Pseudomonas aeruginosa</i> : A Structure–Activity Relationship Study of <i>C</i> -Glycosidic LecB Inhibitors. Journal of Medicinal Chemistry, 2019, 62, 9201-9216.	2.9	45

#	Article	IF	CITATIONS
19	Induction of rare conformation of oligosaccharide by binding to calcium-dependent bacterial lectin: X-ray crystallography and modelling study. European Journal of Medicinal Chemistry, 2019, 177, 212-220.	2.6	6
20	Chemical synthesis of tripeptide thioesters for the biotechnological incorporation into the myxobacterial secondary metabolite argyrin via mutasynthesis. Beilstein Journal of Organic Chemistry, 2019, 15, 2922-2929.	1.3	3
21	Crystal Structures of Fungal Tectonin in Complex with O-Methylated Glycans Suggest Key Role in Innate Immune Defense. Structure, 2018, 26, 391-402.e4.	1.6	28
22	Glycomimetic, Orally Bioavailable LecB Inhibitors Block Biofilm Formation of <i>Pseudomonas aeruginosa</i> . Journal of the American Chemical Society, 2018, 140, 2537-2545.	6.6	97
23	Pathoblockers or antivirulence drugs as a new option for the treatment of bacterial infections. Beilstein Journal of Organic Chemistry, 2018, 14, 2607-2617.	1.3	67
24	Virtual Screening Against Carbohydrate-Binding Proteins: Evaluation and Application to Bacterial <i>Burkholderia ambifaria</i> Lectin. Journal of Chemical Information and Modeling, 2018, 58, 1976-1989.	2.5	9
25	N-Acetylmuramic Acid (MurNAc) Auxotrophy of the Oral Pathogen Tannerella forsythia: Characterization of a MurNAc Kinase and Analysis of Its Role in Cell Wall Metabolism. Frontiers in Microbiology, 2018, 9, 19.	1.5	11
26	Ciprofloxacin-loaded lipid-core nanocapsules as mucus penetrating drug delivery system intended for the treatment of bacterial infections in cystic fibrosis. International Journal of Pharmaceutics, 2017, 527, 92-102.	2.6	58
27	Efficient Two Step βâ€Glycoside Synthesis from N â€Acetyl d â€Glucosamine: Scope and Limitations of Copper(II) Triflateâ€Catalyzed Glycosylation. ChemistrySelect, 2017, 2, 4187-4192.	0.7	10
28	Photorhabdus luminescens lectin A (PIIA): A new probe for detecting α-galactoside–terminating glycoconjugates. Journal of Biological Chemistry, 2017, 292, 19935-19951.	1.6	9
29	Covalent Lectin Inhibition and Application in Bacterial Biofilm Imaging. Angewandte Chemie - International Edition, 2017, 56, 16559-16564.	7.2	56
30	Covalent Lectin Inhibition and Application in Bacterial Biofilm Imaging. Angewandte Chemie, 2017, 129, 16786-16791.	1.6	12
31	Photoswitchable Janus glycodendrimer micelles as multivalent inhibitors of LecA and LecB from Pseudomonas aeruginosa. Colloids and Surfaces B: Biointerfaces, 2017, 159, 605-612.	2.5	16
32	An efficient synthesis of 1,6-anhydro- <i>N</i> -acetylmuramic acid from <i>N</i> -acetylglucosamine. Beilstein Journal of Organic Chemistry, 2017, 13, 2631-2636.	1.3	8
33	<i>O</i> -Alkylated heavy atom carbohydrate probes for protein X-ray crystallography: Studies towards the synthesis of methyl 2- <i>O</i> -methyl-L-selenofucopyranoside. Beilstein Journal of Organic Chemistry, 2016, 12, 2828-2833.	1.3	6
34	The virulence factor LecB varies in clinical isolates: consequences for ligand binding and drug discovery. Chemical Science, 2016, 7, 4990-5001.	3.7	50
35	Development and optimization of a competitive binding assay for the galactophilic low affinity lectin LecA from Pseudomonas aeruginosa. Organic and Biomolecular Chemistry, 2016, 14, 7933-7948.	1.5	45
36	Novel Strategies for the Treatment of <i>Pseudomonas aeruginosa</i> Infections. Journal of Medicinal Chemistry, 2016, 59, 5929-5969.	2.9	215

#	Article	IF	CITATIONS
37	Development of a competitive binding assay for the Burkholderia cenocepacia lectin BC2L-A and structure activity relationship of natural and synthetic inhibitors. MedChemComm, 2016, 7, 519-530.	3.5	20
38	Cinnamide Derivatives of <scp>d</scp> -Mannose as Inhibitors of the Bacterial Virulence Factor LecB from <i>Pseudomonas aeruginosa</i> . ChemistryOpen, 2015, 4, 756-767.	0.9	35
39	Parasite Glycobiology: A Bittersweet Symphony. PLoS Pathogens, 2015, 11, e1005169.	2.1	40
40	Synthesis of mannoheptose derivatives and their evaluation as inhibitors of the lectin LecB from the opportunistic pathogen Pseudomonas aeruginosa. Carbohydrate Research, 2015, 412, 34-42.	1.1	25
41	Bisecting Galactose as a Feature of N-Glycans of Wild-type and Mutant Caenorhabditis elegans. Molecular and Cellular Proteomics, 2015, 14, 2111-2125.	2.5	32
42	A Biophysical Study with Carbohydrate Derivatives Explains the Molecular Basis of Monosaccharide Selectivity of the Pseudomonas aeruginosa Lectin LecB. PLoS ONE, 2014, 9, e112822.	1.1	31
43	Amphiphilic Cationic β3R3-Peptides: Membrane Active Peptidomimetics and Their Potential as Antimicrobial Agents. Biomacromolecules, 2014, 15, 1687-1695.	2.6	20
44	Carbohydrate-Based Anti-Virulence Compounds Against Chronic Pseudomonas aeruginosa Infections with a Focus on Small Molecules. Topics in Medicinal Chemistry, 2014, , 169-186.	0.4	8
45	Methylated glycans as conserved targets of animal and fungal innate defense. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2787-96.	3.3	74
46	Discovery of Two Classes of Potent Glycomimetic Inhibitors of <i>Pseudomonas aeruginosa</i> LecB with Distinct Binding Modes. ACS Chemical Biology, 2013, 8, 1775-1784.	1.6	83
47	New Approaches to Control Infections: Anti-biofilm Strategies against Gram-negative Bacteria. Chimia, 2013, 67, 286-290.	0.3	36
48	Conformational Constraints: Nature Does It Best with Sialyl Lewis ^x . European Journal of Organic Chemistry, 2012, 2012, 5534-5539.	1.2	8
49	Probing the carbohydrate recognition domain of E-selectin: The importance of the acid orientation in sLex mimetics. Bioorganic and Medicinal Chemistry, 2010, 18, 19-27.	1.4	14
50	Caenorhabditis elegans N-glycan Core β-galactoside Confers Sensitivity towards Nematotoxic Fungal Galectin CGL2. PLoS Pathogens, 2010, 6, e1000717.	2.1	95
51	Molecular Basis for Galactosylation of Core Fucose Residues in Invertebrates. Journal of Biological Chemistry, 2009, 284, 36223-36233.	1.6	48
52	ls adamantane a suitable substituent to pre-organize the acid orientation in E-selectin antagonists?. Bioorganic and Medicinal Chemistry, 2008, 16, 1046-1056.	1.4	6
53	Mimetics of Sialyl Lewis ^x : The Pre-Organization of the Carboxylic Acid is Essential for Binding to Selectins. Chimia, 2007, 61, 194-197.	0.3	3
54	Complexation of Copper(II)â^'Chelidamate:Â A Multifrequency-Pulsed Electron Paramagnetic Resonance and Electron Nuclear Double Resonance Analysis. Journal of Physical Chemistry B, 2006, 110, 20655-20663.	1.2	7

#	Article	IF	CITATIONS
55	A safe and convenient method for the preparation of triflyl azide, and its use in diazo transfer reactions to primary amines. Tetrahedron Letters, 2006, 47, 2383-2385.	0.7	71
56	Electrochemical Synthesis of Dimerizing and Nondimerizing Orthoquinone Monoketals ChemInform, 2005, 36, no.	0.1	0
57	Copper dipicolinates as peptidomimetic ligands for the Src SH2 domain. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 4203-4206.	1.0	7
58	Electrochemical Synthesis of Dimerizing and Nondimerizing Orthoquinone Monoketals. Journal of Organic Chemistry, 2004, 69, 8731-8738.	1.7	40