
Xiaoming Wen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11529822/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nature Communications, 2018, 9, 4609.	5.8	596
2	Temperature-Dependent Fluorescence in Carbon Dots. Journal of Physical Chemistry C, 2012, 116, 25552-25557.	1.5	407
3	Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: A combined experimental and first-principles DFT study. Nano Research, 2017, 10, 1673-1696.	5.8	376
4	Hole Transport Layer Free Inorganic CsPbIBr ₂ Perovskite Solar Cell by Dual Source Thermal Evaporation. Advanced Energy Materials, 2016, 6, 1502202.	10.2	373
5	Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites. Nature Communications, 2017, 8, 14120.	5.8	330
6	BiVO ₄ {010} and {110} Relative Exposure Extent: Governing Factor of Surface Charge Population and Photocatalytic Activity. Journal of Physical Chemistry Letters, 2016, 7, 1400-1405.	2.1	231
7	Methylammonium Lead Bromide Perovskite-Based Solar Cells by Vapor-Assisted Deposition. Journal of Physical Chemistry C, 2015, 119, 3545-3549.	1.5	223
8	Defect trapping states and charge carrier recombination in organic–inorganic halide perovskites. Journal of Materials Chemistry C, 2016, 4, 793-800.	2.7	171
9	Intrinsic and Extrinsic Fluorescence in Carbon Nanodots: Ultrafast Timeâ€Resolved Fluorescence and Carrier Dynamics. Advanced Optical Materials, 2013, 1, 173-178.	3.6	156
10	On the upconversion fluorescence in carbon nanodots and graphene quantum dots. Chemical Communications, 2014, 50, 4703-4706.	2.2	140
11	Fluorescence Dynamics in BSA-Protected Au ₂₅ Nanoclusters. Journal of Physical Chemistry C, 2012, 116, 19032-19038.	1.5	114
12	Light Illumination Induced Photoluminescence Enhancement and Quenching in Lead Halide Perovskite. Solar Rrl, 2017, 1, 1600001.	3.1	109
13	Triggering the Passivation Effect of Potassium Doping in Mixedâ€Cation Mixedâ€Halide Perovskite by Light Illumination. Advanced Energy Materials, 2019, 9, 1901016.	10.2	109
14	Mobile Charge-Induced Fluorescence Intermittency in Methylammonium Lead Bromide Perovskite. Nano Letters, 2015, 15, 4644-4649.	4.5	108
15	Mobile Ion Induced Slow Carrier Dynamics in Organic–Inorganic Perovskite CH ₃ NH ₃ PbBr ₃ . ACS Applied Materials & Interfaces, 2016, 8, 5351-5357.	4.0	100
16	Structure-Correlated Dual Fluorescent Bands in BSA-Protected Au ₂₅ Nanoclusters. Journal of Physical Chemistry C, 2012, 116, 11830-11836.	1.5	97
17	Efficient electron transfer in carbon nanodot–graphene oxide nanocomposites. Journal of Materials Chemistry C, 2014, 2, 2894.	2.7	87
18	The Dominant Energy Transport Pathway in Halide Perovskites: Photon Recycling or Carrier Diffusion?. Advanced Energy Materials, 2019, 9, 1900185.	10.2	85

#	Article	IF	CITATIONS
19	Morphology and Carrier Extraction Study of Organic–Inorganic Metal Halide Perovskite by One- and Two-Photon Fluorescence Microscopy. Journal of Physical Chemistry Letters, 2014, 5, 3849-3853.	2.1	84
20	Ultrafast electron transfer in the nanocomposite of the graphene oxide–Au nanocluster with graphene oxide as a donor. Journal of Materials Chemistry C, 2014, 2, 3826-3834.	2.7	82
21	Nucleation and Growth Control of HC(NH2)2PbI3 for Planar Perovskite Solar Cell. Journal of Physical Chemistry C, 2016, 120, 11262-11267.	1.5	80
22	Temperature-Dependent Fluorescence in Au ₁₀ Nanoclusters. Journal of Physical Chemistry C, 2012, 116, 6567-6571.	1.5	78
23	Fluorescent Metallic Nanoclusters: Electron Dynamics, Structure, and Applications. Particle and Particle Systems Characterization, 2015, 32, 142-163.	1.2	77
24	Electric field induced reversible and irreversible photoluminescence responses in methylammonium lead iodide perovskite. Journal of Materials Chemistry C, 2016, 4, 9060-9068.	2.7	77
25	Interfacing BiVO 4 with Reduced Graphene Oxide for Enhanced Photoactivity: A Tale of Facet Dependence of Electron Shuttling. Small, 2016, 12, 5295-5302.	5.2	68
26	Temperature dependence of photoluminescence in silicon quantum dots. Journal Physics D: Applied Physics, 2007, 40, 3573-3578.	1.3	67
27	Dynamic study of the light soaking effect on perovskite solar cells by in-situ photoluminescence microscopy. Nano Energy, 2018, 46, 356-364.	8.2	67
28	Light-Induced Formation of MoO <i>_x</i> S <i>_y</i> Clusters on CdS Nanorods as Cocatalyst for Enhanced Hydrogen Evolution. ACS Applied Materials & Interfaces, 2020, 12, 8324-8332.	4.0	67
29	Spatial Distribution of Lead Iodide and Local Passivation on Organo-Lead Halide Perovskite. ACS Applied Materials & Interfaces, 2017, 9, 6072-6078.	4.0	62
30	Photophysics of 2D Organic–Inorganic Hybrid Lead Halide Perovskites: Progress, Debates, and Challenges. Advanced Science, 2021, 8, 2001843.	5.6	59
31	Significant Improvement in the Performance of PbSe Quantum Dot Solar Cell by Introducing a CsPbBr ₃ Perovskite Colloidal Nanocrystal Back Layer. Advanced Energy Materials, 2017, 7, 1601773.	10.2	56
32	Construction of a Bi2MoO6:Bi2Mo3O12 heterojunction for efficient photocatalytic oxygen evolution. Chemical Engineering Journal, 2018, 353, 636-644.	6.6	56
33	Photogenerated charge dynamics of CdS nanorods with spatially distributed MoS2 for photocatalytic hydrogen generation. Chemical Engineering Journal, 2021, 420, 127709.	6.6	56
34	Ultrafast Carrier Dynamics in Methylammonium Lead Bromide Perovskite. Journal of Physical Chemistry C, 2016, 120, 2542-2547.	1.5	54
35	Temperature dependent spectral properties of type-I and quasi type-II CdSe/CdS dot-in-rod nanocrystals. Physical Chemistry Chemical Physics, 2012, 14, 3505.	1.3	49
36	Slow Response of Carrier Dynamics in Perovskite Interface upon Illumination. ACS Applied Materials & Interfaces, 2018, 10, 31452-31461.	4.0	47

#	Article	IF	CITATIONS
37	Revealing the Role of Methylammonium Chloride for Improving the Performance of 2D Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 25980-25990.	4.0	47
38	Transient Energy Reservoir in 2D Perovskites. Advanced Optical Materials, 2019, 7, 1900971.	3.6	46
39	Phase segregation in inorganic mixed-halide perovskites: from phenomena to mechanisms. Photonics Research, 2020, 8, A56.	3.4	45
40	Spatially Modulating the Fluorescence Color of Mixed-Halide Perovskite Nanoplatelets through Direct Femtosecond Laser Writing. ACS Applied Materials & Interfaces, 2019, 11, 26017-26023.	4.0	44
41	Tracking Dynamic Phase Segregation in Mixedâ€Halide Perovskite Single Crystals under Twoâ€Photon Scanning Laser Illumination. Small Methods, 2019, 3, 1900273.	4.6	44
42	Role of Surface Recombination in Halide Perovskite Nanoplatelets. ACS Applied Materials & Interfaces, 2018, 10, 31586-31593.	4.0	41
43	Free-standing ultra-thin Janus indium oxysulfide for ultrasensitive visible-light-driven optoelectronic chemical sensing. Nano Today, 2021, 37, 101096.	6.2	38
44	The Importance of the Interfacial Contact: Is Reduced Graphene Oxide Always an Enhancer in Photo(Electro)Catalytic Water Oxidation?. ACS Applied Materials & Interfaces, 2019, 11, 23125-23134.	4.0	34
45	Near-infrared enhanced carbon nanodots by thermally assisted growth. Applied Physics Letters, 2012, 101, .	1.5	33
46	Engineering van der Waals Materials for Advanced Metaphotonics. Chemical Reviews, 2022, 122, 15204-15355.	23.0	33
47	Nanoscale Characterization of Carrier Dynamic and Surface Passivation in InGaN/GaN Multiple Quantum Wells on GaN Nanorods. ACS Applied Materials & Interfaces, 2016, 8, 31887-31893.	4.0	32
48	Metallophilic Bondâ€Induced Quenching of Delayed Fluorescence in Au ₂₅ @BSA Nanoclusters. Particle and Particle Systems Characterization, 2013, 30, 467-472.	1.2	31
49	Illuminationâ€Induced Halide Segregation in Gradient Bandgap Mixedâ€Halide Perovskite Nanoplatelets. Advanced Optical Materials, 2018, 6, 1801107.	3.6	30
50	Oxygen-deficient bismuth tungstate and bismuth oxide composite photoanode with improved photostability. Science Bulletin, 2018, 63, 990-996.	4.3	29
51	Long-Distance Ionic Diffusion in Cesium Lead Mixed Halide Perovskite Induced by Focused Illumination. Chemistry of Materials, 2019, 31, 9049-9056.	3.2	28
52	Investigation of anti-solvent induced optical properties change of cesium lead bromide iodide mixed perovskite (CsPbBr3-xlx) quantum dots. Journal of Colloid and Interface Science, 2017, 504, 586-592.	5.0	27
53	Temperature dependent photoluminescence in oxygen ion implanted and rapid thermally annealed ZnOâ^•ZnMgO multiple quantum wells. Applied Physics Letters, 2007, 90, 221914.	1.5	25
54	A room temperature all-optical sensor based on two-dimensional SnS2 for highly sensitive and reversible NO2 sensing. Journal of Hazardous Materials, 2022, 426, 127813.	6.5	25

#	Article	IF	CITATIONS
55	Quantum Confined Stark Effect in Au8 and Au25 Nanoclusters. Journal of Physical Chemistry C, 2013, 117, 3621-3626.	1.5	24
56	Optical Probe Ion and Carrier Dynamics at the CH ₃ NH ₃ PbI ₃ Interface with Electron and Hole Transport Materials. Advanced Materials Interfaces, 2016, 3, 1600467.	1.9	23
57	The Dependence of Bi ₂ MoO ₆ Photocatalytic Water Oxidation Capability on Crystal Facet Engineering. ChemPhotoChem, 2019, 3, 1246-1253.	1.5	23
58	Singlet and Triplet Carrier Dynamics in Rubrene Single Crystal. Journal of Physical Chemistry C, 2013, 117, 17741-17747.	1.5	22
59	Fluorescence origin and spectral broadening mechanism in atomically precise Au8 nanoclusters. Nanoscale, 2013, 5, 10251.	2.8	22
60	Determining In-Plane Carrier Diffusion in Two-Dimensional Perovskite Using Local Time-Resolved Photoluminescence. ACS Applied Materials & Interfaces, 2020, 12, 26384-26390.	4.0	20
61	Enhancing stability and luminescence quantum yield of CsPbBr3 quantum dots by embedded in borosilicate glass. Journal of Alloys and Compounds, 2021, 874, 159962.	2.8	20
62	Confined Auâ€Pd Ensembles in Mesoporous TiO ₂ Spheres for the Photocatalytic Oxidation of Acetaldehyde. ChemCatChem, 2013, 5, 3557-3561.	1.8	18
63	Revealing Dynamic Effects of Mobile Ions in Halide Perovskite Solar Cells Using Timeâ€Resolved Microspectroscopy. Small Methods, 2021, 5, e2000731.	4.6	18
64	Layer number dependent exciton dissociation and carrier recombination in 2D Ruddlesden–Popper halide perovskites. Journal of Materials Chemistry C, 2021, 9, 8966-8974.	2.7	18
65	Visualizing the Impact of Light Soaking on Morphological Domains in an Operational Cesium Lead Halide Perovskite Solar Cell. Journal of Physical Chemistry Letters, 2020, 11, 136-143.	2.1	17
66	Spectroscopic Insight into Efficient and Stable Hole Transfer at the Perovskite/Spiro-OMeTAD Interface with Alternative Additives. ACS Applied Materials & Interfaces, 2021, 13, 5752-5761.	4.0	17
67	Free charges <i>versus</i> excitons: photoluminescence investigation of InGaN/GaN multiple quantum well nanorods and their planar counterparts. Nanoscale, 2018, 10, 5358-5365.	2.8	16
68	Studies of the photostability of CdSe/CdS dot-in-rod nanoparticles. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	14
69	Time-resolved fluorescence anisotropy study of organic lead halide perovskite. Solar Energy Materials and Solar Cells, 2016, 151, 102-112.	3.0	14
70	Optical properties of gold particle-cluster core–satellite nanoassemblies. RSC Advances, 2013, 3, 19609.	1.7	13
71	The enhancement of electron–phonon coupling in glutathione-protected Au25 clusters. Journal of Colloid and Interface Science, 2013, 402, 86-89.	5.0	12
72	A high-performance visible-light-driven all-optical switch enabled by ultra-thin gallium sulfide. Journal of Materials Chemistry C, 2021, 9, 3115-3121.	2.7	12

#	Article	IF	CITATIONS
73	Intermediate phase-enhanced Ostwald ripening for the elimination of phase segregation in efficient inorganic CsPbIBr2 perovskite solar cells. Science China Materials, 2021, 64, 2655-2666.	3.5	12
74	Dynamic study on the transformation process of gold nanoclusters. Nanotechnology, 2014, 25, 445705.	1.3	8
75	Origin and physical effects of edge states in two-dimensional Ruddlesden-Popper perovskites. IScience, 2022, 25, 104420.	1.9	8
76	InOOH-mediated intergrown heterojunctions for enhanced photocatalytic Performance: Assembly and interfacial charge carrier transferring. Chemical Engineering Journal, 2022, 442, 136355.	6.6	7
77	Ni2+ doping induced structural phase transition and photoluminescence enhancement of CsPbBr3. AlP Advances, 2021, 11, .	0.6	3
78	Controllable Acceleration and Deceleration of Charge Carrier Transport in Metalâ€Halide Perovskite Singleâ€Crystal by Csâ€Cation Induced Bandgap Engineering. Small, 2022, 18, e2107680.	5.2	3
79	Illumination dependent carrier dynamics of CH ₃ NH ₃ PbBr ₃ perovskite. Proceedings of SPIE, 2015, , .	0.8	1
80	Improving Hole Transport and Extraction by Interface Engineering in Perovskite Solar Cells. Energy Technology, 0, , 2101002.	1.8	1
81	Optical properties and electron dynamics in carbon nanodots. , 2013, , .		0
82	Ultrafast charge generation and relaxation dynamics in methylammonium lead bromide perovskites. , 2015, , .		0
83	Ultrafast transient absorption study of hot carrier dynamics in hafnium nitride and zirconium nitride. , 2015, , .		0