
Giovanna Suzzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11529771/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biogenic amines in dry fermented sausages: a review. International Journal of Food Microbiology, 2003, 88, 41-54.	2.1	515
2	Genome renewal: A new phenomenon revealed from a genetic study of 43 strains ofSaccharomyces cerevisiae derived from natural fermentation of grape musts. Yeast, 1994, 10, 1543-1552.	0.8	249
3	Technological Factors Affecting Biogenic Amine Content in Foods: A Review. Frontiers in Microbiology, 2016, 7, 1218.	1.5	238
4	Effects of pH, temperature and NaCl concentration on the growth kinetics, proteolytic activity and biogenic amine production of Enterococcus faecalis. International Journal of Food Microbiology, 2001, 64, 105-117.	2.1	220
5	Polyamines and Gut Microbiota. Frontiers in Nutrition, 2019, 6, 16.	1.6	155
6	Biogenic Amines in Raw and Processed Seafood. Frontiers in Microbiology, 2012, 3, 188.	1.5	143
7	Marine Biotoxins: Occurrence, Toxicity, Regulatory Limits and Reference Methods. Frontiers in Microbiology, 2016, 7, 1051.	1.5	126
8	Candida zemplinina Can Reduce Acetic Acid Produced by Saccharomyces cerevisiae in Sweet Wine Fermentations. Applied and Environmental Microbiology, 2012, 78, 1987-1994.	1.4	122
9	Application of starter cultures to table olive fermentation: an overview on the experimental studies. Frontiers in Microbiology, 2012, 3, 248.	1.5	116
10	Molecular identification and osmotolerant profile of wine yeasts that ferment a high sugar grape must. International Journal of Food Microbiology, 2009, 130, 179-187.	2.1	114
11	Higher alcohol and acetic acid production by apiculate wine yeasts. Journal of Applied Bacteriology, 1992, 73, 126-130.	1.1	112
12	Impact of microbial cultures on proteolysis and release of bioactive peptides in fermented milk. Food Microbiology, 2014, 42, 117-121.	2.1	103
13	Diversity of Candida zemplinina strains from grapes and Italian wines. Food Microbiology, 2012, 29, 18-26.	2.1	100
14	A taxonomic survey of lactic acid bacteria isolated from wheat (Triticum durum) kernels and non-conventional flours. Systematic and Applied Microbiology, 2007, 30, 561-571.	1.2	98
15	A survey of yeasts in traditional sausages of southern Italy. FEMS Yeast Research, 2001, 1, 161-167.	1.1	88
16	Secondary products formation as a tool for discriminating non-Saccharomyces wine strains. Strain diversity in non-Saccharomyces wine yeasts. Antonie Van Leeuwenhoek, 1997, 71, 239-242.	0.7	77
17	Aroma Profile of Montepulciano d'Abruzzo Wine Fermented by Single and Co-culture Starters of Autochthonous Saccharomyces and Non-saccharomyces Yeasts. Frontiers in Microbiology, 2016, 7, 610.	1.5	77
18	Genetic and phenotypic diversity of Saccharomyces sensu stricto strains isolated from Amarone wine. Diversity of Saccharomyces strains from Amarone wine. Antonie Van Leeuwenhoek, 1999, 75, 207-215.	0.7	75

#	Article	IF	CITATIONS
19	Use of Staphylococcus xylosus as a starter culture in dried sausages: effect on the biogenic amine content. Meat Science, 2002, 61, 275-283.	2.7	75
20	Identification of subdominant sourdough lactic acid bacteria and their evolution during laboratory-scale fermentations. Food Microbiology, 2007, 24, 592-600.	2.1	74
21	Histamine poisoning and control measures in fish and fishery products. Frontiers in Microbiology, 2014, 5, 500.	1.5	73
22	Yeast microbiota associated with spontaneous sourdough fermentations in the production of traditional wheat sourdough breads of the Abruzzo region (Italy). Antonie Van Leeuwenhoek, 2010, 97, 119-129.	0.7	70
23	High content of biogenic amines in Pecorino cheeses. Food Microbiology, 2013, 34, 137-144.	2.1	67
24	Effects of milk high pressure homogenization on biogenic amine accumulation during ripening of ovine and bovine Italian cheeses. Food Chemistry, 2007, 104, 693-701.	4.2	64
25	Improvement of a Wine <i>Saccharomyces cerevisiae</i> Strain by a Breeding Program. Applied and Environmental Microbiology, 1985, 50, 1064-1067.	1.4	63
26	Rapid Detection and Quantification of Tyrosine Decarboxylase Gene (tdc) and Its Expression in Gram-Positive Bacteria Associated with Fermented Foods Using PCR-Based Methods. Journal of Food Protection, 2008, 71, 93-101.	0.8	62
27	Biogenic amine content and microbiological profile of Pecorino di Farindola cheese. Food Microbiology, 2011, 28, 128-136.	2.1	62
28	Yeasts from Colombian Kumis as source of peptides with Angiotensin I converting enzyme (ACE) inhibitory activity in milk. International Journal of Food Microbiology, 2012, 159, 39-46.	2.1	57
29	Factors influencing biogenic amine production by a strain of Oenococcus oeni in a model system. Food Control, 2005, 16, 609-616.	2.8	56
30	Biogenic amines during ripening in †Semicotto Caprino' cheese: role of enterococci. International Journal of Food Science and Technology, 2001, 36, 153-160.	1.3	55
31	The predominance, biodiversity and biotechnological properties of Kluyveromyces marxianus in the production of Pecorino di Farindola cheese. International Journal of Food Microbiology, 2014, 187, 41-49.	2.1	51
32	A survey on yeast microbiota associated with an Italian traditional sweet-leavened baked good fermentation. Food Research International, 2004, 37, 469-476.	2.9	50
33	Yeast biota associated to naturally fermented table olives from different Italian cultivars. International Journal of Food Microbiology, 2013, 161, 203-208.	2.1	47
34	Microbiological and chemical profiles of naturally fermented table olives and brines from different Italian cultivars. Antonie Van Leeuwenhoek, 2012, 102, 121-131.	0.7	46
35	Biometric Study of Acetoin Production in <i>Hanseniaspora guilliermondii</i> and <i>Kloeckera apiculata</i> . Applied and Environmental Microbiology, 1993, 59, 1838-1841.	1.4	46
36	Biogeographical characterization of Saccharomyces cerevisiae wine yeast by molecular methods. Frontiers in Microbiology, 2013, 4, 166.	1.5	45

#	Article	IF	CITATIONS
37	Editorial: Biogenic amines in foods. Frontiers in Microbiology, 2015, 6, 472.	1.5	45
38	Evaluation of biogenic amines in wine: Determination by an improved HPLC-PDA method. Food Control, 2016, 62, 351-356.	2.8	44
39	Higher alcohol and acetoin production by <i>Zygosaccharomyces</i> wine yeasts. Journal of Applied Bacteriology, 1993, 75, 541-545.	1.1	43
40	Modeling the Aminogenic Potential of <i>Enterococcus faecalis</i> EF37 in Dry Fermented Sausages through Chemical and Molecular Approaches. Applied and Environmental Microbiology, 2008, 74, 2740-2750.	1.4	43
41	Biogenic Amines in Italian Pecorino Cheese. Frontiers in Microbiology, 2012, 3, 171.	1.5	42
42	Biodiversity study of wine yeasts belonging to the "terroir―of Montepulciano d'Abruzzo "Colline Teramane―revealed Saccharomyces cerevisiae strains exhibiting atypical and unique 5.8S-ITS restriction patterns. Food Microbiology, 2014, 39, 7-12.	2.1	41
43	Influence of pig rennet on proteolysis, organic acids content and microbiota of Pecorino di Farindola, a traditional Italian ewe's raw milk cheese. Food Chemistry, 2015, 175, 121-127.	4.2	41
44	Enterococcus Populations in Pecorino Abruzzese Cheese: Biodiversity and Safety Aspects. Journal of Food Protection, 2007, 70, 1561-1568.	0.8	40
45	Influence of organic viticulture on non-Saccharomyces wine yeast populations. Annals of Microbiology, 2011, 61, 57-66.	1.1	40
46	Effect of grape indigenous Saccharomyces cerevisiae strains on Montepulciano d'Abruzzo red wine quality. Food Research International, 2012, 46, 22-29.	2.9	39
47	Chromosome arrangement, differentiation of growth kinetics and volatile molecule profiles in Kluyveromyces marxianus strains from Italian cheeses. International Journal of Food Microbiology, 2015, 214, 151-158.	2.1	39
48	Development and implementation of multilocus sequence typing to study the diversity of the yeast Kluyveromyces marxianus in Italian cheeses. Microbial Genomics, 2018, 4, .	1.0	38
49	FLO5 gene controls flocculation phenotype and adhesive properties in a Saccharomyces cerevisiae sparkling wine strain. Scientific Reports, 2017, 7, 10786.	1.6	37
50	Detection and identification of yeasts in natural whey starter for Parmigiano Reggiano cheese-making. International Dairy Journal, 2017, 66, 13-17.	1.5	37
51	Detection and identification of wild yeasts in Champús, a fermented Colombian maize beverage. Food Microbiology, 2008, 25, 771-777.	2.1	36
52	Combination of Multiplex PCR and PCR-Denaturing Gradient Gel Electrophoresis for Monitoring Common Sourdough-Associated Lactobacillus Species. Applied and Environmental Microbiology, 2006, 72, 3793-3796.	1.4	34
53	Editorial: Foodborne Pathogens: Hygiene and Safety. Frontiers in Microbiology, 2019, 10, 1974.	1.5	34
54	Flocculation of wine yeasts: frequency, differences, and stability of the character. Canadian Journal of Microbiology, 1984, 30, 36-39.	0.8	33

#	Article	IF	CITATIONS
55	Microbiological characteristics of kumis, a traditional fermented Colombian milk, with particular emphasis on enterococci population. Food Microbiology, 2011, 28, 1041-1047.	2.1	33
56	Acetoin production in Saccharomyces cerevisiae wine yeasts. FEMS Microbiology Letters, 1993, 108, 23-26.	0.7	32
57	Detection of <i>Brettanomyces</i> spp. in Red Wines Using Realâ€∓ime PCR. Journal of Food Science, 2012, 77, M545-9.	1.5	32
58	Potential use for <i>Zygosaccharomyces</i> species in winemaking. Journal of Wine Research, 1993, 4, 87-94.	0.9	31
59	Accumulation γ-Aminobutyric Acid and Biogenic Amines in a Traditional Raw Milk Ewe's Cheese. Foods, 2019, 8, 401.	1.9	31
60	Multistarter from Organic Viticulture for Red Wine Montepulciano d'Abruzzo Production. Frontiers in Microbiology, 2012, 3, 135.	1.5	29
61	Genetic diversity of FLO1 and FLO5 genes in wine flocculent Saccharomyces cerevisiae strains. International Journal of Food Microbiology, 2014, 191, 45-52.	2.1	29
62	A Survey of Antibiotic Resistance in Micrococcaceae Isolated from Italian Dry Fermented Sausages. Journal of Food Protection, 2003, 66, 937-945.	0.8	28
63	Proteolytic activity of Saccharomyces cerevisiae strains associated with Italian dry-fermented sausages in a model system. International Journal of Food Microbiology, 2011, 150, 50-58.	2.1	28
64	Lactobacillus pentosus dominates spontaneous fermentation of Italian table olives. LWT - Food Science and Technology, 2014, 57, 710-717.	2.5	28
65	Biodiversity of autolytic ability in flocculent <i>Saccharomyces cerevisiae</i> strains suitable for traditional sparkling wine fermentation. Yeast, 2016, 33, 303-312.	0.8	28
66	Development and application of a real-time PCR-based assay to enumerate total yeasts and Pichia anomala, Pichia guillermondii and Pichia kluyveri in fermented table olives. Food Control, 2012, 23, 356-362.	2.8	27
67	Multilocus analysis reveals large genetic diversity in Kluyveromyces marxianus strains isolated from Parmigiano Reggiano and Pecorino di Farindola cheeses. International Journal of Food Microbiology, 2016, 233, 1-10.	2.1	27
68	Impact of Saccharomyces cerevisiae strains on traditional sparkling wines production. Food Research International, 2018, 109, 552-560.	2.9	27
69	Food borne yeasts as DNA-bioprotective agents against model genotoxins. International Journal of Food Microbiology, 2012, 153, 275-280.	2.1	26
70	The role of environmental factors and medium composition on bacteriocin-like inhibitory substances (BLIS) production by Enterococcus mundtii strains. Food Microbiology, 2008, 25, 722-728.	2.1	25
71	Long-term impact of farm management and crops on soil microorganisms assessed by combined DGGE and PLFA analyses. Frontiers in Microbiology, 2014, 5, 644.	1.5	24
72	Contribution of Pichia manshurica strains to aroma profile of organic wines. European Food Research and Technology, 2020, 246, 1405-1417.	1.6	24

#	Article	IF	CITATIONS
73	Adhesion properties and surface hydrophobicity of Pichia manshurica strains isolated from organic wines. LWT - Food Science and Technology, 2018, 87, 385-392.	2.5	23
74	Production of high levels of acetoin in <i>Saccharomyces cerevisiae</i> wine yeasts is a recessive trait. Journal of Applied Bacteriology, 1995, 78, 169-174.	1.1	22
75	Editorial: Biological Hazards in Food. Frontiers in Microbiology, 2016, 7, 2154.	1.5	21
76	Histamine Food Poisoning. Handbook of Experimental Pharmacology, 2016, 241, 217-235.	0.9	19
77	Influence of pig rennet on fatty acid composition, volatile molecule profile, texture and sensory properties of Pecorino di Farindola cheese. Journal of the Science of Food and Agriculture, 2015, 95, 2252-2263.	1.7	18
78	A survey of lactic acid bacteria in Italian silage. Journal of Applied Bacteriology, 1984, 56, 373-379.	1.1	17
79	Flocculent phenotypes in wine yeasts. Letters in Applied Microbiology, 1991, 13, 7-10.	1.0	16
80	From Wild Strain to Domesticated Strain: The Philosophy of Microbial Diversity in Foods. Frontiers in Microbiology, 2011, 2, 169.	1.5	16
81	Cell Wall Surface Properties of Kluyveromyces marxianus Strains From Dairy-Products. Frontiers in Microbiology, 2019, 10, 79.	1.5	16
82	Concentrations of Contaminants with Regulatory Limits in Samples of Clam (Chamelea gallina) Collected along the Abruzzi Region Coast in Central Italy. Journal of Food Protection, 2015, 78, 1719-1728.	0.8	15
83	Determination of Lipophilic Marine Biotoxins in Mussels Harvested from the Adriatic Sea by LC-MS/MS. Frontiers in Microbiology, 2018, 9, 152.	1.5	15
84	Development of a rapid method for the detection of Yersinia enterocolitica serotype O:8 from food. Food Microbiology, 2018, 73, 85-92.	2.1	14
85	Different genetic responses to oenological conditions between a flocculent wine yeast and its FLO5 deleted strain: Insights from the transcriptome. Food Research International, 2018, 114, 178-186.	2.9	13
86	Discovering the Influence of Microorganisms on Wine Color. Frontiers in Microbiology, 2021, 12, 790935.	1.5	13
87	Trebbiano wine produced by using Saccharomyces cerevisiae strains endowed with β-glucosidase activity. Annals of Microbiology, 2015, 65, 1565-1571.	1.1	12
88	Intraspecies polymorphisms of Kluyveromyces marxianus strains from Yaghnob valley. FEMS Microbiology Letters, 2018, 365, .	0.7	12
89	The flocculation of wine yeasts: biochemical and morphological characteristics inZygosaccharomyces ? flocculation inZygosaccharomyces. Antonie Van Leeuwenhoek, 1992, 61, 317-322.	0.7	11
90	A survey ofSaccharomyces populations associated with wine fermentations from the Apulia region (South Italy). Annals of Microbiology, 2007, 57, 545-552.	1.1	11

#	Article	lF	CITATIONS
91	Volatile compounds produced in wine by Colombian wildSaccharomyces cerevisiae strains. Annals of Microbiology, 2009, 59, 733-740.	1.1	11
92	Detection of yessotoxin by three different methods in Mytilus galloprovincialis of Adriatic Sea, Italy. Chemosphere, 2013, 90, 1077-1082.	4.2	11
93	Variations of internal pH in typical Italian sourdough yeasts during co-fermentation with lactobacilli. LWT - Food Science and Technology, 2008, 41, 1610-1615.	2.5	10
94	Cell surface hydrophobicity and flocculence in Saccharomyces cerevisiae wine yeasts. Colloids and Surfaces B: Biointerfaces, 1994, 2, 505-510.	2.5	9
95	Influence of Iodine Feeding on Microbiological and Physico-Chemical Characteristics and Biogenic Amines Content in a Raw Ewes' Milk Cheese. Foods, 2018, 7, 108.	1.9	9
96	Food borne bacterial models for detection of benzo[a]pyrene―DNA adducts formation using RAPD ―PCR. Microbial Biotechnology, 2016, 9, 400-407.	2.0	7
97	Promoting Candida zemplinina adhesion on oak chips: A strategy to enhance esters and glycerol content of Montepulciano d'Abruzzo organic wines. Food Research International, 2021, 150, 110772.	2.9	7
98	The flocculation of wine yeasts: biochemical and morphological characteristics in Kloeckera apiculata. Antonie Van Leeuwenhoek, 1996, 69, 273-277.	0.7	6
99	New Trends in Sparkling Wine Production: Yeast Rational Selection. , 2019, , 347-386.		6
100	Microorganisms of Wine. , 1989, , 17-30.		6
101	Food Microbiology: The Past and the New Challenges for the Next 10 Years. Frontiers in Microbiology, 2020, 11, 237.	1.5	5
102	Influence of FLO1 and FLO5 genes on aroma profile of sparkling wines. LWT - Food Science and Technology, 2021, 146, 111407.	2.5	5
103	Yessotoxin determination in Mytilus galloprovincialis revealed by an in vitro functional assay. Environmental Science and Pollution Research, 2013, 20, 1189-1192.	2.7	4
104	Studies on isobutyric acid-producing bacteira in silage. Letters in Applied Microbiology, 1990, 10, 69-72.	1.0	3
105	Assessment of knowledge and applications of hygiene practices in the food service sector. Journal of Food Safety, 2018, 38, e12457.	1.1	3
106	Correlation between IRC7 gene expression and 4â€mercaptoâ€4â€methylpentanâ€2â€one production in Saccharomyces cerevisiae strains. Yeast, 2020, 37, 487-495.	0.8	3
107	Prodotti della tradizione e contenuto di amine biogene alternative alla Low tyramine diet per la sostenibilità dei prodotti di nicchia e la salubrità del consumatore. Italian Journal of Agronomy, 2011, 6, 8.	0.4	2
108	Biogenic Amines. , 2022, , 95-102.		1

#	Article	IF	CITATIONS
109	Multistarter from Organic Viticulture for Red Wine Montepulciano d'Abruzzo Production. , 2015, , 55-78.		0