
Thomas W Jeffries

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1152948/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bacteria engineered for fuel ethanol production: current status. Applied Microbiology and Biotechnology, 2003, 63, 258-266.	1.7	683
2	Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nature Biotechnology, 2007, 25, 319-326.	9.4	449
3	Metabolic engineering for improved fermentation of pentoses by yeasts. Applied Microbiology and Biotechnology, 2004, 63, 495-509.	1.7	436
4	Engineering yeasts for xylose metabolism. Current Opinion in Biotechnology, 2006, 17, 320-326.	3.3	426
5	Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on d-xylose. Metabolic Engineering, 2008, 10, 360-369.	3.6	332
6	Nutritional Regulation of Lignin Degradation by <i>Phanerochaete chrysosporium</i> . Applied and Environmental Microbiology, 1981, 42, 290-296.	1.4	308
7	Comparative genomics of biotechnologically important yeasts. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9882-9887.	3.3	302
8	Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors. Bioresource Technology, 2011, 102, 5884-5890.	4.8	240
9	Rapid whole-genome mutational profiling using next-generation sequencing technologies. Genome Research, 2008, 18, 1638-1642.	2.4	225
10	Roles of manganese and organic acid chelators in regulating lignin degradation and biosynthesis of peroxidases by Phanerochaete chrysosporium. Applied and Environmental Microbiology, 1992, 58, 2402-2409.	1.4	222
11	Yeast metabolic engineering for hemicellulosic ethanol production. Current Opinion in Biotechnology, 2009, 20, 300-306.	3.3	221
12	Optimal Growth and Ethanol Production from Xylose by Recombinant Saccharomyces cerevisiae Require Moderate d -Xylulokinase Activity. Applied and Environmental Microbiology, 2003, 69, 495-503.	1.4	168
13	Utilization of xylose by bacteria, yeasts, and fungi. , 1983, 27, 1-32.		163
14	Biodegradation of lignin-carbohydrate complexes. Biodegradation, 1990, 1, 163-176.	1.5	163
15	Comparative genomics of xylose-fermenting fungi for enhanced biofuel production. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13212-13217.	3.3	163
16	Conversion of xylose to ethanol under aerobic conditions by Candida tropicalis. Biotechnology Letters, 1981, 3, 213-218.	1.1	150
17	Saccharomyces cerevisiae Engineered for Xylose Metabolism Exhibits a Respiratory Response. Applied and Environmental Microbiology, 2004, 70, 6816-6825.	1.4	146
18	Ethanol and thermotolerance in the bioconversion of xylose by yeasts. Advances in Applied Microbiology, 2000, 47, 221-268.	1.3	145

#	Article	IF	CITATIONS
19	Respiratory efficiency and metabolite partitioning as regulatory phenomena in yeasts. Enzyme and Microbial Technology, 1990, 12, 2-19.	1.6	142
20	A strong nitrogen source-regulated promoter for controlled expression of foreign genes in the yeast Pichia pastoris. Gene, 1998, 216, 93-102.	1.0	137
21	Emerging technology for fermenting -xylose. Trends in Biotechnology, 1985, 3, 208-212.	4.9	119
22	Nitrogen limitation, oxygen limitation, and lipid accumulation in Lipomyces starkeyi. Bioresource Technology, 2016, 200, 780-788.	4.8	118
23	Cofermentation of Glucose, Xylose, and Cellobiose by the Beetle-Associated Yeast Spathaspora passalidarum. Applied and Environmental Microbiology, 2012, 78, 5492-5500.	1.4	117
24	Mineralization of ¹⁴ C-Ring-Labeled Synthetic Lignin Correlates with the Production of Lignin Peroxidase, not of Manganese Peroxidase or Laccase. Applied and Environmental Microbiology, 1990, 56, 1806-1812.	1.4	117
25	Dilute oxalic acid pretreatment for biorefining giant reed (Arundo donax L.). Biomass and Bioenergy, 2011, 35, 3018-3024.	2.9	113
26	Biochemistry and genetics of microbial xylanases. Current Opinion in Biotechnology, 1996, 7, 337-342.	3.3	111
27	Conversion of Pentoses to Ethanol by Yeasts and Fungi. Critical Reviews in Biotechnology, 1989, 9, 1-40.	5.1	109
28	Production of ethanol from wood hydrolyzate by yeasts. Bioresource Technology, 2000, 72, 253-260.	4.8	106
29	Genomics and the making of yeast biodiversity. Current Opinion in Genetics and Development, 2015, 35, 100-109.	1.5	105
30	Strain selection, taxonomy, and genetics of xylose-fermenting yeasts. Enzyme and Microbial Technology, 1994, 16, 922-932.	1.6	103
31	Bioconversion of giant reed (Arundo donax L.) hemicellulose hydrolysate to ethanol by Scheffersomyces stipitis CBS6054. Biomass and Bioenergy, 2012, 39, 296-305.	2.9	93
32	Chromophore release from kraft pulp by purified streptomyces roseiscleroticus xylanases. Applied Microbiology and Biotechnology, 1993, 39, 405.	1.7	92
33	Enzymatic polishing of jute/cotton blended fabrics. Journal of Bioscience and Bioengineering, 1996, 81, 18-20.	0.9	90
34	Shuffling of Promoters for Multiple Genes To Optimize Xylose Fermentation in an Engineered <i>Saccharomyces cerevisiae</i> Strain. Applied and Environmental Microbiology, 2007, 73, 6072-6077.	1.4	90
35	<i>Pichia stipitis</i> genomics, transcriptomics, and gene clusters. FEMS Yeast Research, 2009, 9, 793-807.	1.1	90
36	Simultaneous saccharification and ethanol fermentation of oxalic acid pretreated corncob assessed with response surface methodology. Bioresource Technology, 2009, 100, 6307-6311.	4.8	83

#	Article	IF	CITATIONS
37	Hydrogen production by Anabaena cylindrica: effects of varying ammonium and ferric ions, pH, and light. Applied and Environmental Microbiology, 1978, 35, 704-710.	1.4	83
38	The roles of xylan and lignin in oxalic acid pretreated corncob during separate enzymatic hydrolysis and ethanol fermentation. Bioresource Technology, 2010, 101, 4379-4385.	4.8	82
39	Xylitol formation and key enzyme activities in Candida boidinii under different oxygen transfer rates. Journal of Bioscience and Bioengineering, 1995, 80, 513-516.	0.9	81
40	Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption. FEMS Yeast Research, 2012, 12, 582-597.	1.1	81
41	Biodegradation of lignin and hemicelluloses. , 1994, , 233-277.		75
42	Molecular Cloning of XYL3 (d -Xylulokinase) from Pichia stipitis and Characterization of Its Physiological Function. Applied and Environmental Microbiology, 2002, 68, 1232-1239.	1.4	75
43	Effects of aeration on growth, ethanol and polyol accumulation by <i>Spathaspora passalidarum</i> NRRL Yâ€27907 and <i>Scheffersomyces stipitis</i> NRRL Yâ€7124. Biotechnology and Bioengineering, 2015, 112, 457-469.	1.7	75
44	Purification, Characterization, and Substrate Specificities of Multiple Xylanases from <i>Streptomyces</i> sp. Strain B-12-2. Applied and Environmental Microbiology, 1994, 60, 2609-2615.	1.4	75
45	Alkaline-active xylanase produced by an alkaliphilicBacillus sp isolated from kraft pulp. Journal of Industrial Microbiology, 1995, 15, 434-441.	0.9	72
46	Transposon Mutagenesis To Improve the Growth of Recombinant Saccharomyces cerevisiae on d-Xylose. Applied and Environmental Microbiology, 2007, 73, 2061-2066.	1.4	72
47	Enzymic saccharification of alfalfa fibre after liquid hot water pretreatment. Process Biochemistry, 1999, 35, 33-41.	1.8	71
48	Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae. Metabolic Engineering, 2004, 6, 229-238.	3.6	71
49	Second generation bioethanol production from Saccharum spontaneum L. ssp. aegyptiacum (Willd.) Hack Bioresource Technology, 2010, 101, 5358-5365.	4.8	71
50	Effects of environmental conditions on production of xylitol byCandida boidinii. World Journal of Microbiology and Biotechnology, 1995, 11, 213-218.	1.7	70
51	Changing Flux of Xylose Metabolites by Altering Expression of Xylose Reductase and Xylitol Dehydrogenase in Recombinant Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology, 2003, 106, 277-286.	1.4	70
52	Effectiveness of dilute oxalic acid pretreatment of MiscanthusÂ×Âgiganteus biomass for ethanol production. Biomass and Bioenergy, 2013, 59, 540-548.	2.9	70
53	Comparison of corn steep liquor with other nutrients in the fermentation of D-Xylose by Pichia stipitis CBS 6054. Biotechnology Letters, 1994, 16, 211-214.	1.1	69
54	<i>Pichia stipitis</i> Genes for Alcohol Dehydrogenase with Fermentative and Respiratory Functions. Applied and Environmental Microbiology, 1998, 64, 1350-1358.	1.4	67

#	Article	IF	CITATIONS
55	Dilute Acid Pretreatment of Corncob for Efficient Sugar Production. Applied Biochemistry and Biotechnology, 2011, 163, 658-668.	1.4	64
56	Production, Purification, and Characterization of β-(1-4)-Endoxylanase of <i>Streptomyces roseiscleroticus</i> . Applied and Environmental Microbiology, 1991, 57, 987-992.	1.4	64
57	Scale-up study of oxalic acid pretreatment of agricultural lignocellulosic biomass for the production of bioethanol. Bioresource Technology, 2011, 102, 7451-7456.	4.8	63
58	Anaerobic growth and improved fermentation of Pichia stipitis bearing a URA1 gene from Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 1998, 50, 339-345.	1.7	62
59	Disruption of the cytochromec gene in xylose-utilizing yeastPichia stipitis leads to higher ethanol production. , 1999, 15, 1021-1030.		61
60	Ethanol fermentation on the move. Nature Biotechnology, 2005, 23, 40-41.	9.4	60
61	Effect of glucose supplements on the fermentation of xylose byPachysolen tannophilus. Biotechnology and Bioengineering, 1985, 27, 171-176.	1.7	59
62	Ethanol production from d-xylose in batch fermentations with Candida shehatae: process variables. Applied Microbiology and Biotechnology, 1986, 24, 294.	1.7	58
63	Levels of enzymes of the pentose phosphate pathway in Pachysolen tannophilus Y-2460 and selected mutants. Enzyme and Microbial Technology, 1986, 8, 353-359.	1.6	57
64	Xylitol production from DEO hydrolysate of corn stover by Pichia stipitis YS-30. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 1649-1655.	1.4	57
65	Fermentation of hemicellulosic sugars and sugar mixtures byCandida shehatae. Biotechnology and Bioengineering, 1988, 31, 502-506.	1.7	56
66	High-efficiency transformation of Pichia stipitis based on its URA3 gene and a homologous autonomous replication sequence, ARS2. Applied and Environmental Microbiology, 1994, 60, 4245-4254.	1.4	55
67	Differential and synergistic action of Streptomyces endoxylanases in prebleaching of kraft pulps. Enzyme and Microbial Technology, 1995, 17, 954-959.	1.6	52
68	Cloning and disruption of the b-isopropylmalate dehydrogenase gene (LEU2  ) of Pichia stipitis with URA3 and recovery of the double auxotroph. Applied Microbiology and Biotechnology, 1998, 49, 141-146.	1.7	52
69	Roles for Microbial Enzymes in Pulp and Paper Processing. ACS Symposium Series, 1996, , 2-14.	O.5	50
70	Enzymatic hydrolysis, simultaneous saccharification and ethanol fermentation of oxalic acid pretreated giant reed (Arundo donax L.). Industrial Crops and Products, 2013, 49, 392-399.	2.5	48
71	SHAM-sensitive alternative respiration in the xylose-metabolizing yeastPichia stipitis. Yeast, 2002, 19, 1203-1220.	0.8	45
72	Response surface optimization of oxalic acid pretreatment of yellow poplar (Liriodendron tulipifera) for production of glucose and xylose monosaccarides. Bioresource Technology, 2011, 102, 1440-1446.	4.8	45

#	Article	IF	CITATIONS
73	Ethanol production from alfalfa fiber fractions by saccharification and fermentation. Process Biochemistry, 2001, 36, 1199-1204.	1.8	44
74	Genetic Engineering for Improved Xylose Fermentation by Yeasts. Advances in Biochemical Engineering/Biotechnology, 1999, 65, 117-161.	0.6	43
75	Xylitol production by a Pichia stipitis D-xylulokinase mutant. Applied Microbiology and Biotechnology, 2005, 68, 42-45.	1.7	43
76	An optimized transformation protocol for Lipomyces starkeyi. Current Genetics, 2014, 60, 223-230.	0.8	43
77	Xylose metabolism by Candida shehatae in continuous culture. Applied Microbiology and Biotechnology, 1988, 28, 478-486.	1.7	42
78	Sh ble and Cre adapted for functional genomics and metabolic engineering of Pichia stipitis. Enzyme and Microbial Technology, 2006, 38, 741-747.	1.6	42
79	Enzyme Processes for Pulp and Paper: A Review of Recent Developments. ACS Symposium Series, 2003, , 210-239.	0.5	39
80	Transcriptional Control of <i>ADH</i> Genes in the Xylose-Fermenting Yeast <i>Pichia stipitis</i> . Applied and Environmental Microbiology, 1999, 65, 2363-2368.	1.4	37
81	Selective production of extracellular peroxidases from Phanerochaete chrysosporium in an airlift bioreactor. Journal of Bioscience and Bioengineering, 1990, 70, 158-163.	0.9	36
82	Comparative study of xylanase kinetics using dinitrosalicylic, arsenomolybdate, and ion chromatographic assays. Applied Biochemistry and Biotechnology, 1998, 70-72, 257-265.	1.4	34
83	Molecular characterization of theHansenula polymorphaFLD1 gene encoding formaldehyde dehydrogenase. Yeast, 2002, 19, 37-42.	0.8	34
84	Purification and properties of xylitol dehydrogenase from the xylose-fermenting yeastCandida shehatae. Applied Biochemistry and Biotechnology, 1990, 26, 197-206.	1.4	33
85	Mutants of Pachysolen tannophilus showing enhanced rates of growth and ethanol formation from d-xylose. Enzyme and Microbial Technology, 1984, 6, 254-258.	1.6	31
86	Characterisation of the gene cluster for l-rhamnose catabolism in the yeast Scheffersomyces (Pichia) stipitis. Gene, 2012, 492, 177-185.	1.0	31
87	Continuous ethanol production fromD-xylose byCandida shehatae. Biotechnology and Bioengineering, 1987, 30, 685-691.	1.7	29
88	Production and Ecological Significance of Yeast Cell Wall-Degrading Enzymes from Oerskovia. Applied and Environmental Microbiology, 1978, 36, 594-605.	1.4	29
89	Cloning and Characterization of Two Pyruvate Decarboxylase Genes from Pichia stipitis CBS 6054. Applied and Environmental Microbiology, 1998, 64, 94-97.	1.4	29
90	Bioconversion of Secondary Fiber Fines to Ethanol Using Counter-Current Enzymatic Saccharification and Co-Fermentation. Applied Biochemistry and Biotechnology, 1999, 78, 435-444.	1.4	28

#	Article	IF	CITATIONS
91	Ethanol production from non-detoxified whole slurry of sulfite-pretreated empty fruit bunches at a low cellulase loading. Bioresource Technology, 2014, 164, 331-337.	4.8	28
92	Role of organic acid chelators in manganese regulation of lignin degradation byPhanerochaete chrysosporium. Applied Biochemistry and Biotechnology, 1993, 39-40, 227-238.	1.4	27
93	Characterization and Complementation of a Pichia stipitis Mutant Unable to Grow on D-Xylose or L-Arabinose. Applied Biochemistry and Biotechnology, 2000, 84-86, 201-216.	1.4	26
94	Characteristics and Adaptability of Some New Isolates of <i>Clostridium thermocellum</i> . Applied and Environmental Microbiology, 1985, 49, 475-477.	1.4	25
95	Xylitol formation by Candida boidinii in oxygen limited chemostat culture. Biotechnology Letters, 1996, 18, 753-758.	1.1	24
96	Response surface methodology (RSM) to evaluate moisture effects on corn stover in recovering xylose by DEO hydrolysis. Bioresource Technology, 2012, 108, 134-139.	4.8	22
97	Regulation of Ligninase Production in White-Rot Fungi. ACS Symposium Series, 1991, , 200-206.	0.5	21
98	2-Deoxyglucose as a Selective Agent for Derepressed Mutants of Pichia stipitis. Applied Biochemistry and Biotechnology, 1999, 77, 211-222.	1.4	21
99	Evaluation of Ethanol Production from Corncob Using Scheffersomyces (Pichia) stipitis CBS 6054 by Volumetric Scale-up. Applied Biochemistry and Biotechnology, 2011, 165, 814-822.	1.4	21
100	Enzymatic Treatments of Pulps. ACS Symposium Series, 1992, , 313-329.	0.5	20
101	Action patterns of (1→3)-β-d-glucanases from Oerskovia xanthineolytica on laminaran, lichenan, and yeast glucan. Carbohydrate Research, 1981, 95, 87-100.	1.1	19
102	The role of alcohol dehydrogenase in the fermentation of D-xylose byCandida shehatae ATCC 22984. Biotechnology Letters, 1988, 10, 37-42.	1.1	19
103	The effect of initial cell concentration on xylose fermentation by Pichia stipitis. Applied Biochemistry and Biotechnology, 2007, 137-140, 653-662.	1.4	18
104	Fermentation Kinetics for Xylitol Production by a Pichia stipitis d-Xylulokinase Mutant Previously Grown in Spent Sulfite Liquor. Applied Biochemistry and Biotechnology, 2008, 148, 199-209.	1.4	18
105	Comprehensive evaluation of two genomeâ€scale metabolic network models for <i>Scheffersomyces stipitis</i> . Biotechnology and Bioengineering, 2015, 112, 1250-1262.	1.7	18
106	Engineering the <i>Pichia stipitis</i> Genome for Fermentation of Hemicellulose Hydrolysates. , 0, , 37-47.		18
107	Continuous xylose fermentation byCandida shehatae in a two-stage reactor. Applied Biochemistry and Biotechnology, 1988, 17, 221-229.	1.4	17
108	Molecular Characterization of a Gene for Aldose Reductase (CbXYL1) from Candida boidinii and Its Expression in Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology, 2003, 106, 265-276.	1.4	17

#	Article	IF	CITATIONS
109	Diminished Respirative Growth and Enhanced Assimilative Sugar Uptake Result in Higher Specific Fermentation Rates by the MutantPichia stipitis FPL-061. Applied Biochemistry and Biotechnology, 1997, 63-65, 109-116.	1.4	16
110	Rapid 2,2'-bicinchoninic-based xylanase assay compatible with high throughput screening. Biotechnology Letters, 2003, 25, 1619-1623.	1.1	15
111	Effects of Nitrate on Fermentation of Xylose and Glucose by Pachysolen Tannophilus. Nature Biotechnology, 1983, 1, 503-506.	9.4	14
112	Batch and membrane-assisted cell recycling in ethanol production byCandida shehatae. Biotechnology Letters, 1987, 9, 293-298.	1.1	13
113	Genetic transformation of Aureobasidium pullulans. Journal of Biotechnology, 1991, 21, 283-288.	1.9	13
114	Characterization and N-Terminal Amino Acid Sequences of β-(1-4)Endoxylanases from Streptomyces roseiscleroticus: Purification Incorporating a Bioprocessing Agent. Protein Expression and Purification, 1993, 4, 120-129.	0.6	13
115	Elucidating redox balance shift in Scheffersomyces stipitis' fermentative metabolism using a modified genome-scale metabolic model. Microbial Cell Factories, 2018, 17, 140.	1.9	13
116	Increased Xylose Reductase Activity in the Xylose-Fermenting Yeast Pichia stipitis by Overexpression of XYL1. , 1996, 57-58, 267-276.		13
117	Toner Removal by Alkaline-Active Cellulases from Desert Basidiomycetes. ACS Symposium Series, 1996, , 267-279.	0.5	11
118	Effects of Gene Orientation and Use of Multiple Promoters on the Expression of XYL1 and XYL2 in Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology, 2008, 145, 69-78.	1.4	11
119	Continuous-Culture Responses of Candida shehatae to Shifts in Temperature and Aeration: Implications for Ethanol Inhibition. Applied and Environmental Microbiology, 1989, 55, 2152-2154.	1.4	11
120	Unstable petite and grande variants of Candida shehatae. Biotechnology Letters, 1984, 6, 777-782.	1.1	10
121	Increased xylose reductase activity in the xylose-fermenting yeastPichia stipitis by overexpression of XYL1. Applied Biochemistry and Biotechnology, 1996, 57-58, 267-276.	1.4	10
122	Regulation of phosphotransferases in glucose- and xylose-fermenting yeasts. Applied Biochemistry and Biotechnology, 1997, 63-65, 97-108.	1.4	10
123	We march backwards into the future. Current Opinion in Biotechnology, 2009, 20, 255-256.	3.3	10
124	Effect of corn steep liquor on fermentation of mixed sugars byCandida shehatae FPL-702. Applied Biochemistry and Biotechnology, 1996, 57-58, 551-561.	1.4	9
125	Comparison of multiple gene assembly methods for metabolic engineering. Applied Biochemistry and Biotechnology, 2007, 137-140, 703-710.	1.4	8
126	Interactions of fungi from fermented sausage with regenerated cellulose casings. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 1793-1802.	1.4	8

#	Article	IF	CITATIONS
127	Enzymatic hydrolysis of the walls of yeasts cells and germinated fungal spores. Biochimica Et Biophysica Acta - General Subjects, 1977, 499, 10-23.	1.1	7
128	Pretreatments for Converting Wood into Paper and Chemicals. ACS Symposium Series, 2007, , 392-408.	0.5	7
129	Spathaspora passalidarum selected for resistance to AFEX hydrolysate shows decreased cell yield. FEMS Yeast Research, 2018, 18, .	1.1	7
130	Biodegradation of lignin-carbohydrate complexes. , 1991, , 163-176.		7
131	Growth Inhibition of Rhodopseudomonas capsulata by Methylmercury Acetate. Applied Microbiology, 1975, 30, 156-158.	0.6	7
132	Intermittent illumination increases biophotolytic hydrogen yield by Anabaena cylindrica. Applied and Environmental Microbiology, 1978, 35, 1228-1230.	1.4	7
133	Evaluation of Oxalic Acid Pretreatment Condition Using Response Surface Method for Producing Bio-ethanol from Yellow Poplar (Liriodendron tulipifera) by Simultaneous Saccharification and Fermentation. Journal of the Korean Wood Science and Technology, 2011, 39, 75-85.	0.8	7
134	A variable-tilt fermentation rack for screening organisms in microfuge tubes. Biotechnology Letters, 1996, 10, 239.	0.5	5
135	Comparative Study of Xylanase Kinetics Using Dinitrosalicylic, Arsenomolybdate, and Ion Chromatographie Assays. , 1998, , 257-265.		5
136	Growth Inhibition of <i>Rhodopseudomonas capsulata</i> by Methylmercury Acetate. Applied Microbiology, 1975, 30, 156-158.	0.6	5
137	Elucidating xylose metabolism of scheffersomyces stipitis by integrating principal component analysis with flux balance analysis. , 2013, , .		3
138	Effect of Corn Steep Liquor on Fermentation of Mixed Sugars by Candida shehatae FPL-702. , 1996, , 551-561.		3
139	Feedstocks: New Supplies and Processing. Applied Biochemistry and Biotechnology, 1999, 77, 3-4.	1.4	2
140	Introduction of a special issue on biotechnology for the pulp and paper industry. Enzyme and Microbial Technology, 2008, 43, 77.	1.6	2
141	Regulation of Phosphotransferases in Glucose- and Xylose-Fermenting Yeasts. , 1997, , 97-108.		2
142	Bioethanol Production Using By-product of VPP (Value Prior to Pulping). Journal of the Korean Wood Science and Technology, 2010, 38, 561-567.	0.8	2
143	Multiple-variant design for the enrichment of photosynthetic bacterial populations. Canadian Journal of Microbiology, 1975, 21, 1046-1054.	0.8	1
144	Enzymatic Solutions to Enhance Bonding, Bleaching and Contaminant Removal,. Materials Research Society Symposia Proceedings, 1992, 266, 277.	0.1	1

#	Article	IF	CITATIONS
145	Genetics and Genomics in Bioenergy and Bioproducts. Applied Biochemistry and Biotechnology, 2003, 107, 631-632.	1.4	1
146	Characterization and Complementation of a Pichia stipitis Mutant Unable to Grow on D-Xylose or L-Arabinose. , 2000, , 201-216.		1
147	Molecular Characterization of a Gene for Aldose Reductase (CbXYL1) from Candida boidinii and Its Expression in Saccharomyces cerevisiae. , 2003, , 265-276.		0
148	A new generation. Journal of Industrial Microbiology and Biotechnology, 2010, 37, 641-642.	1.4	0
149	Protein Expression in Nonconventional Yeasts. , 2014, , 302-317.		0
150	Introduction to Microbial Catalysis and Engineering. , 2004, 113-116, 323-324.		0
151	Fermentation Kinetics for Xylitol Production by a Pichia stipitis d-Xylulokinase Mutant Previously Grown in Spent Sulfite Liquor. , 2007, , 717-727.		0
152	Diminished Respirative Growth and Enhanced Assimilative Sugar Uptake Result in Higher Specific Fermentation Rates by the Mutant Pichia stipitis FPL-061. , 1997, , 109-116.		0
153	2-Deoxyglucose as a Selective Agent for Derepressed Mutants of Pichia stipitis. , 1999, , 211-222.		0