Alexey Orlov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1152940/publications.pdf

Version: 2024-02-01

361045 433756 47 987 20 31 citations h-index g-index papers 48 48 48 706 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Real-time detection of ochratoxin A in wine through insight of aptamer conformation in conjunction with graphene field-effect transistor. Biosensors and Bioelectronics, 2022, 200, 113890.	5.3	41
2	Express high-sensitive detection of ochratoxin A in food by a lateral flow immunoassay based on magnetic biolabels. Food Chemistry, 2022, 383, 132427.	4.2	27
3	Multiplex Label-Free Kinetic Characterization of Antibodies for Rapid Sensitive Cardiac Troponin I Detection Based on Functionalized Magnetic Nanotags. International Journal of Molecular Sciences, 2022, 23, 4474.	1.8	13
4	Highly Sensitive Nanomagnetic Quantification of Extracellular Vesicles by Immunochromatographic Strips: A Tool for Liquid Biopsy. Nanomaterials, 2022, 12, 1579.	1.9	14
5	Nanobiosensing based on optically selected antibodies and superparamagnetic labels for rapid and highly sensitive quantification of polyvalent hepatitis B surface antigen. Analytical Methods, 2021, 13, 2424-2433.	1.3	19
6	Rapid and Easy-to-Use Method for Accurate Characterization of Target Binding and Kinetics of Magnetic Particle Bioconjugates for Biosensing. Sensors, 2021, 21, 2802.	2.1	17
7	Spectral-Phase Interferometry Detection of Ochratoxin A via Aptamer-Functionalized Graphene Coated Glass. Nanomaterials, $2021, 11, 226$.	1.9	13
8	Nanomagnetic lateral flow assay for high-precision quantification of diagnostically relevant concentrations of serum TSH. Talanta, 2020, 216, 120961.	2.9	36
9	Multiplex label-free biosensor for detection of autoantibodies in human serum: Tool for new kinetics-based diagnostics of autoimmune diseases. Biosensors and Bioelectronics, 2020, 159, 112187.	5. 3	38
10	Data on characterization of glass biochips and validation of the label-free biosensor for detection of autoantibodies in human serum. Data in Brief, 2020, 30, 105648.	0.5	4
11	High-performance method for identification of super enhancers from ChIP-Seq data with configurable cloud virtual machines. MethodsX, 2020, 7, 101165.	0.7	6
12	Novel magneto-optical sensors based on anisotropic magnetic nanomaterials for detecting biological agents. , 2020, , .		0
13	Three-dimensional modular biosensor for express determination of several cardiac markers., 2020,,.		O
14	High-sensitive immunoanalytical platform based on iron oxide nanoparticles and magnetic beads containing composite nanomaterials. , 2020, , .		O
15	Rapid lateral flow assays based on the quantification ofÂmagnetic nanoparticle labels for multiplexed immunodetection of small molecules: application to the determination of drugs of abuse. Mikrochimica Acta, 2019, 186, 621.	2.5	67
16	Analytical Platform with Selectable Assay Parameters Based on Three Functions of Magnetic Nanoparticles: Demonstration of Highly Sensitive Rapid Quantitation of Staphylococcal Enterotoxin B in Food. Analytical Chemistry, 2019, 91, 9852-9857.	3.2	45
17	Oxidative Polymerization of 3,6-Phenylenediamino-2,5-dichlorobenzoquinone. Polymer Science - Series B, 2019, 61, 519-529.	0.3	O
18	Interferometric detection of chloramphenicol via its immunochemical recognition at polymer-coated nano-corrugated surfaces. Sensors and Actuators B: Chemical, 2019, 282, 984-991.	4.0	21

#	Article	IF	CITATIONS
	Electrochemical Behavior of a Hybrid Nanocomposite Based on		
19			

ALEXEY ORLOV

#	Article	IF	CITATION
37	Real-time sensitive detection of low molecular weight compounds by optical immunosensors. , 2016, , .		0
38	Rapid dry-reagent immunomagnetic biosensing platform based on volumetric detection of nanoparticles on 3D structures. Biosensors and Bioelectronics, 2016, 79, 423-429.	5.3	70
39	Direct immunosensing by spectral correlation interferometry: assay characteristics versus antibody immobilization chemistry. Analytical and Bioanalytical Chemistry, 2015, 407, 3955-3964.	1.9	31
40	A new real-time method for investigation of affinity properties and binding kinetics of magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 2015, 380, 231-235.	1.0	39
41	Biosensors based on spectral correlation interferometry for biomedical research and diagnostics. , 2014, , .		O
42	Development of Immunoassays Using Interferometric Real-Time Registration of Their Kinetics. Acta Naturae, 2014, 6, 85-95.	1.7	22
43	Development of immunoassays using interferometric real-time registration of their kinetics. Acta Naturae, 2014, 6, 85-95.	1.7	5
44	Magnetic Immunoassay for Detection of Staphylococcal Toxins in Complex Media. Analytical Chemistry, 2013, 85, 1154-1163.	3.2	77
45	Detection of pyrethroids by spectral correlation interferometry. Applied Biochemistry and Microbiology, 2013, 49, 306-311.	0.3	23
46	Reversible Conformational Transitions of a Polymer Brush Containing Boronic Acid and its Interaction with Mucin Glycoprotein. Macromolecular Bioscience, 2011, 11, 275-284.	2.1	31
47	Effect of the C-terminal domain peptide fragment (65–76) of monocytic chemotactic protein-1 (MCP-1) on the interaction between MCP-1 and heparin. Doklady Biological Sciences, 2010, 433, 289-292.	0.2	6