Yong Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11527954/publications.pdf

Version: 2024-02-01

394421 477307 1,256 40 19 29 citations h-index g-index papers 40 40 40 1331 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Highâ€resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography <i>in vivo</i> . Journal of Biophotonics, 2018, 11, e201700024.	2.3	86
2	Noninvasive Determination of Melanoma Depth using a Handheld Photoacoustic Probe. Journal of Investigative Dermatology, 2017, 137, 1370-1372.	0.7	54
3	Quantitative photoacoustic elastography of Young's modulus in humans. , 2017, , .		6
4	Linear-array-based photoacoustic tomography for label-free high-throughput detection and quantification of circulating melanoma tumor cell clusters. , 2017, , .		0
5	Cuffing-based photoacoustic flowmetry in humans in the optical diffusive regime. Journal of Biophotonics, 2016, 9, 208-212.	2.3	10
6	Tutorial on photoacoustic tomography. Journal of Biomedical Optics, 2016, 21, 061007.	2.6	287
7	Label-free high-throughput detection and quantification of circulating melanoma tumor cell clusters by linear-array-based photoacoustic tomography. Journal of Biomedical Optics, 2016, 22, 1.	2.6	38
8	Use of a single xenon flash lamp for photoacoustic computed tomography of multiple-centimeter-thick biological tissue <i>ex vivo</i> and a whole mouse body <i>in vivo</i> Journal of Biomedical Optics, 2016, 22, 041003.	2.6	13
9	Grueneisen relaxation photoacoustic microscopy <i>in vivo</i> . Journal of Biomedical Optics, 2016, 21, 066005.	2.6	15
10	Cuffing-based photoacoustic flowmetry in humans at depths in the diffusive regime. , 2016, , .		0
11	Quantitative photoacoustic elastography in humans. Journal of Biomedical Optics, 2016, 21, 066011.	2.6	26
12	Vascular elastic photoacoustic tomography in humans. Proceedings of SPIE, 2016, , .	0.8	0
13	In vivo photoacoustic flowmetry in the optical diffusive regime based on saline injection. , 2016, , .		O
			the state of the s
14	Detecting both melanoma depth and volume <i>in vivo</i> with a handheld photoacoustic probe. Proceedings of SPIE, 2016, , .	0.8	1
14 15		0.8	9
	Proceedings of SPIE, 2016, , . Photoacoustic microscopy of arteriovenous shunts and blood diffusion in early-stage tumors.		
15	Photoacoustic microscopy of arteriovenous shunts and blood diffusion in early-stage tumors. Journal of Biomedical Optics, 2016, 21, 1.	2.6	9

#	Article	IF	Citations
19	Photoacoustic microscopy of complex regional pain syndrome type I (CRPS-1) after stellate ganglion blocks in vivo. , 2015, , .		O
20	Handheld photoacoustic probe to detect both melanoma depth and volume at high speed <i>in vivo</i> . Journal of Biophotonics, 2015, 8, 961-967.	2.3	55
21	$\mbox{\sc dist}$ is melanoma depth detection by a handheld photoacoustic microscope. Proceedings of SPIE, 2015, , .	0.8	2
22	Noninvasive photoacoustic microscopy of methemoglobin (i) in vivo (i). Journal of Biomedical Optics, 2015, 20, 036007.	2.6	15
23	Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits. Experimental Eye Research, 2015, 138, 153-158.	2.6	41
24	In vivo photoacoustic flowmetry at depths of the diffusive regime based on saline injection. Journal of Biomedical Optics, 2015, 20, 1.	2.6	4
25	Photoacoustic microscopy with enhanced resolution and imaging depth aided by optical clearing. , 2014, , .		0
26	Cross-correlation-based flowmetry using optical-resolution photoacoustic microscopy with a digital micromirror device. Proceedings of SPIE, 2014, , .	0.8	0
27	Photoacoustic microscopy with an enhanced axial resolution of 5.8 \hat{l} /4m. Proceedings of SPIE, 2014, , .	0.8	0
28	Near-infrared optical-resolution photoacoustic microscopy. Optics Letters, 2014, 39, 5192.	3.3	112
29	Calibration-free absolute quantification of particle concentration by statistical analyses of photoacoustic signals <i>in vivo </i> . Journal of Biomedical Optics, 2014, 19, 037001.	2.6	25
30	Photoacoustic correlation spectroscopy for calibration-free absolute quantification of particle concentration. Proceedings of SPIE, $2014, \ldots$	0.8	0
31	DMD-based random-access optical-resolution photoacoustic microscopy. , 2014, , .		2
32	Microcirculatory changes identified by photoacoustic microscopy in patients with complex regional pain syndrome type I after stellate ganglion blocks. Journal of Biomedical Optics, 2014, 19, 086017.	2.6	21
33	Handheld photoacoustic microscopy to detect melanoma depth in vivo. Optics Letters, 2014, 39, 4731.	3.3	98
34	Slow-sound photoacoustic microscopy. Applied Physics Letters, 2013, 102, 163702.	3.3	25
35	Optical clearing-aided photoacoustic microscopy with enhanced resolution and imaging depth. Optics Letters, 2013, 38, 2592.	3.3	55
36	Absolute photoacoustic thermometry in deep tissue. Optics Letters, 2013, 38, 5228.	3.3	72

Yong Zhou

#	Article	IF	CITATION
37	Random-access optical-resolution photoacoustic microscopy using a digital micromirror device. Optics Letters, 2013, 38, 2683.	3.3	38
38	Calibration-free in vivo transverse blood flowmetry based on cross correlation of slow time profiles from photoacoustic microscopy. Optics Letters, 2013, 38, 3882.	3.3	48
39	Cross-correlation-based transverse flow measurements using optical resolution photoacoustic microscopy with a digital micromirror device. Journal of Biomedical Optics, 2013, 18, 096004.	2.6	33
40	Photoacoustic microscopy of bilirubin in tissue phantoms. Journal of Biomedical Optics, 2012, 17, 126019.	2.6	38