
Muriel Barberi-Heyob

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11526361/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends in Biotechnology, 2008, 26, 612-621.	9.3	692
2	Nanoparticles for Radiation Therapy Enhancement: the Key Parameters. Theranostics, 2015, 5, 1030-1044.	10.0	289
3	Design, synthesis, and biological evaluation of folic acid targeted tetraphenylporphyrin as novel photosensitizers for selective photodynamic therapy. Bioorganic and Medicinal Chemistry, 2005, 13, 2799-2808.	3.0	188
4	Phthalocyanines Covalently Bound to Biomolecules for a Targeted Photodynamic Therapy. Current Medicinal Chemistry, 2007, 14, 1673-1687.	2.4	156
5	A peptide competing with VEGF165 binding on neuropilin-1 mediates targeting of a chlorin-type photosensitizer and potentiates its photodynamic activity in human endothelial cells. Journal of Controlled Release, 2006, 111, 153-164.	9.9	135
6	X-ray-Induced Singlet Oxygen Activation with Nanoscintillator-Coupled Porphyrins. Journal of Physical Chemistry C, 2013, 117, 21583-21589.	3.1	117
7	Improvement of <i>meta</i> -tetra(Hydroxyphenyl)chlorin-Like Photosensitizer Selectivity with Folate-Based Targeted Delivery. Synthesis and in Vivo Delivery Studies. Journal of Medicinal Chemistry, 2008, 51, 3867-3877.	6.4	112
8	Advantages and limitations of commonly used methods to assay the molecular permeability of gap junctional intercellular communication. BioTechniques, 2008, 45, 33-62.	1.8	102
9	Approaches to physical stimulation of metallic nanoparticles for glioblastoma treatment. Advanced Drug Delivery Reviews, 2019, 138, 344-357.	13.7	90
10	AGuIX [®] from bench to bedside—Transfer of an ultrasmall theranostic gadolinium-based nanoparticle to clinical medicine. British Journal of Radiology, 2019, 92, 20180365.	2.2	86
11	Multifunctional Peptide-Conjugated Hybrid Silica Nanoparticles for Photodynamic Therapy and MRI. Theranostics, 2012, 2, 889-904.	10.0	75
12	Interest of RGD-containing linear or cyclic peptide targeted tetraphenylchlorin as novel photosensitizers for selective photodynamic activity. Bioorganic Chemistry, 2007, 35, 205-220.	4.1	74
13	The 2-aminoglucosamide motif improves cellular uptake and photodynamic activity of tetraphenylporphyrin. European Journal of Medicinal Chemistry, 2005, 40, 1111-1122.	5.5	63
14	Gap junctional intercellular communication capacity by gap-FRAP technique: A comparative study. Biotechnology Journal, 2007, 2, 50-61.	3.5	61
15	Quantum dot–folic acid conjugates as potential photosensitizers in photodynamic therapy of cancer. Photochemical and Photobiological Sciences, 2011, 10, 842.	2.9	55
16	Erythropoietin-induced reduction of hypoxia before and during fractionated irradiation contributes to improvement of radioresponse in human glioma xenografts. International Journal of Radiation Oncology Biology Physics, 2004, 59, 250-259.	0.8	52
17	Recent Improvements in the Use of Synthetic Peptides for a Selective Photodynamic Therapy. Anti-Cancer Agents in Medicinal Chemistry, 2006, 6, 469-488.	1.7	52
18	Multifunctional ultrasmall nanoplatforms for vascular-targeted interstitial photodynamic therapy of brain tumors guided by real-time MRI. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 657-670.	3.3	52

Muriel Barberi-Heyob

#	Article	IF	CITATIONS
19	Systems biology approach for in vivo photodynamic therapy optimization of ruthenium-porphyrin compounds. Journal of Photochemistry and Photobiology B: Biology, 2012, 117, 80-89.	3.8	51
20	Stability of peptides and therapeutic success in cancer. Expert Opinion on Drug Metabolism and Toxicology, 2011, 7, 793-802.	3.3	46
21	Preparation and characterization of mTHPC-loaded solid lipid nanoparticles for photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 2014, 130, 161-169.	3.8	41
22	Tissue distribution and pharmacokinetics of an ATWLPPR-conjugated chlorin-type photosensitizer targeting neuropilin-1 in glioma-bearing nude mice. Photochemical and Photobiological Sciences, 2008, 7, 433-441.	2.9	39
23	Ultrasmall AGuIX theranostic nanoparticles for vascular-targeted interstitial photodynamic therapy of glioblastoma. International Journal of Nanomedicine, 2017, Volume 12, 7075-7088.	6.7	39
24	Photodynamic therapy targeting neuropilin-1: Interest of pseudopeptides with improved stability properties. Biochemical Pharmacology, 2010, 80, 226-235.	4.4	38
25	Metabolic Profile of a Peptide-Conjugated Chlorin-Type Photosensitizer Targeting Neuropilin-1: An in Vivo and in Vitro Study. Drug Metabolism and Disposition, 2007, 35, 806-813.	3.3	36
26	Peptide-conjugated chlorin-type photosensitizer binds neuropilin-1 in vitro and in vivo. Journal of Photochemistry and Photobiology B: Biology, 2009, 96, 101-108.	3.8	35
27	Neuropilin-1 Targeting Photosensitization-Induced Early Stages of Thrombosis via Tissue Factor Release. Pharmaceutical Research, 2010, 27, 468-479.	3.5	35
28	Sugar-based peptidomimetics as potential inhibitors of the vascular endothelium growth factor binding to neuropilin-1. Bioorganic and Medicinal Chemistry, 2010, 18, 3285-3298.	3.0	35
29	Polymer-lipid-PEG hybrid nanoparticles as photosensitizer carrier for photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 2017, 173, 12-22.	3.8	34
30	Bifunctional polypyridyl-Ru(ii) complex grafted onto gadolinium-based nanoparticles for MR-imaging and photodynamic therapy. Dalton Transactions, 2013, 42, 12410.	3.3	32
31	Functionalized silica-based nanoparticles for photodynamic therapy. Nanomedicine, 2011, 6, 995-1009.	3.3	30
32	Response Surface Methodology: An Extensive Potential to Optimize in vivo Photodynamic Therapy Conditions. International Journal of Radiation Oncology Biology Physics, 2009, 75, 244-252.	0.8	29
33	New Peptide-Conjugated Chlorin-Type Photosensitizer Targeting Neuropilin-1 for Anti-Vascular Targeted Photodynamic Therapy. International Journal of Molecular Sciences, 2015, 16, 24059-24080.	4.1	29
34	Carbohydrate-based peptidomimetics targeting neuropilin-1: Synthesis, molecular docking study and in vitro biological activities. Bioorganic and Medicinal Chemistry, 2016, 24, 5315-5325.	3.0	29
35	Proton MR Spectroscopy and Diffusion MR Imaging Monitoring to Predict Tumor Response to Interstitial Photodynamic Therapy for Glioblastoma. Theranostics, 2017, 7, 436-451.	10.0	29
36	Overcoming the diverse mechanisms of multidrug resistance in lung cancer cells by photodynamic therapy using pTHPP-loaded PLGA-lipid hybrid nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 149, 218-228.	4.3	27

#	Article	IF	CITATIONS
37	Molecular modelling, synthesis and biological evaluation of peptide inhibitors as anti-angiogenic agent targeting neuropilin-1 for anticancer application. Journal of Biomolecular Structure and Dynamics, 2017, 35, 26-45.	3.5	22
38	Stimulation of medulloblastoma stem cells differentiation by a peptidomimetic targeting neuropilin-1. Oncotarget, 2018, 9, 15312-15325.	1.8	22
39	<p>Multiscale Selectivity and in vivo Biodistribution of NRP-1-Targeted Theranostic AGuIX Nanoparticles for PDT of Glioblastoma</p> . International Journal of Nanomedicine, 2020, Volume 15, 8739-8758.	6.7	19
40	Real-Time Monitoring of Photocytotoxicity in Nanoparticles-Based Photodynamic Therapy: A Model-Based Approach. PLoS ONE, 2012, 7, e48617.	2.5	19
41	Rational design of an arene ruthenium chlorin conjugate for in vivo anticancer activity. Inorganica Chimica Acta, 2014, 414, 134-140.	2.4	15
42	Tumor vascular responses to antivascular and antiangiogenic strategies: looking for suitable models. Trends in Biotechnology, 2012, 30, 649-658.	9.3	14
43	Monte Carlo simulations guided by imaging to predict the in vitro ranking of radiosensitizing nanoparticles. International Journal of Nanomedicine, 2016, Volume 11, 6169-6179.	6.7	11
44	Can Cerenkov Light Really Induce an Effective Photodynamic Therapy?. Radiation, 2021, 1, 5-17.	1.4	11
45	Nanoparticles for Photodynamic Therapy Applications. Fundamental Biomedical Technologies, 2011, , 511-565.	0.2	8
46	The detrimental invasiveness of glioma cells controlled by gadolinium chelate-coated gold nanoparticles. Nanoscale, 2021, 13, 9236-9251.	5.6	7
47	Robustness Analysis of a Geant4-GATE Simulator for Nanoradiosensitizers Characterization. IEEE Transactions on Nanobioscience, 2016, 15, 209-217.	3.3	6
48	Identification of Pharmacokinetics Models in the Presence of Timing Noise. European Journal of Control, 2008, 14, 149-157.	2.6	5
49	In vivo characterization of physiological and metabolic changes related to isocitrate dehydrogenase 1 mutation expcression by multiparametric MRI and MRS in a rat model with orthotopically grafted humanâ€derived glioblastoma cell lines. NMR in Biomedicine, 2021, 34, e4490.	2.8	5
50	Multi-tracer and multiparametric PET imaging to detect the IDH mutation in glioma: a preclinical translational in vitro, in vivo, and ex vivo study. Cancer Imaging, 2022, 22, 16.	2.8	5
51	System identification of the intracellular photoreaction process induced by photodynamic therapy. , 2008, , .		4
52	Preliminary Study of New Gallium-68 Radiolabeled Peptide Targeting NRP-1 to Detect Brain Metastases by Positron Emission Tomography. Molecules, 2021, 26, 7273.	3.8	4
53	Divergent synthesis of novel unsymmetrical dendrons containing photosensitizing units. Tetrahedron Letters, 2006, 47, 8745-8749.	1.4	3
54	How Nanoparticles Can Solve Resistance and Limitation in PDT Efficiency. Resistance To Targeted Anti-cancer Therapeutics, 2015, , 197-211.	0.1	3

#	Article	IF	CITATIONS
55	Terbium-Based AGuIX-Design Nanoparticle to Mediate X-ray-Induced Photodynamic Therapy. Pharmaceuticals, 2021, 14, 396.	3.8	3
56	Vascular-Targeted Photodynamic Therapy (VTP). , 0, , .		1
57	Global sensitivity analysis and estimation of photophysical parameters from in vivo data in photodynamic therapy. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 1731-1736.	0.4	1
58	System identification of the intrabrain tumoral uptake of multifunctional nanoparticles. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 154-159.	0.4	1