Jing Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11524565/publications.pdf

Version: 2024-02-01

		1163117	1372567	
13	824	8	10	
papers	citations	h-index	g-index	
13	13	13	1294	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials, 2008, 29, 970-983.	11.4	382
2	Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features. Acta Biomaterialia, 2008, 4, 192-201.	8.3	251
3	Reduced immune cell responses on nano and submicron rough titanium. Acta Biomaterialia, 2015, 16, 223-231.	8.3	45
4	Decreased Platelet Adhesion and Enhanced Endothelial Cell Functions on Nano and Submicron-Rough Titanium Stents. Tissue Engineering - Part A, 2012, 18, 1389-1398.	3.1	39
5	Enhanced endothelial cell density on NiTi surfaces with sub-micron to nanometer roughness. International Journal of Nanomedicine, 2008, 3, 75.	6.7	33
6	Reduced responses of macrophages on nanometer surface features of altered alumina crystalline phases. Acta Biomaterialia, 2009, 5, 1425-1432.	8.3	33
7	Surface defects induced charge imbalance for boosting charge separation and solar-driven photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2021, 596, 12-21.	9.4	19
8	Greater endothelial cell responses on submicron and nanometer rough titanium surfaces. Journal of Biomedical Materials Research - Part A, 2010, 94A, 1042-1049.	4.0	18
9	Enhanced Vascular Endothelial Cell Function on Nanostructured Titanium Surface Features: The Role of Nano to Submicron Roughness. Materials Research Society Symposia Proceedings, 2008, 1136, 40401.	0.1	3
10	Endothelial Cell Adhesion on Highly Controllable Compared to Random Nanostructured Titanium Surface Features. Materials Research Society Symposia Proceedings, 2006, 951, 29.	0.1	1
11	Improved endothelial cell responses on highly controllable nanostructured surface features. , 2007, ,		O
12	Nano patterned titanium for orthopedic applications. , 2007, , .		0
13	Enhanced vascular endothelial cell function on nanostructured titanium surface features., 2009,,.		O