
Kosuke Ueki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11524453/publications.pdf Version: 2024-02-01

KOSUKE HEKI

#	Article	IF	CITATIONS
1	Heterogeneous microstructures and corrosion resistance of biomedical Co-Cr-Mo alloy fabricated by electron beam melting (EBM). Additive Manufacturing, 2018, 24, 103-114.	3.0	32
2	Microstructure and Mechanical Properties of Heat-Treated Co-20Cr-15W-10Ni Alloy for Biomedical Application. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 2773-2782.	2.2	21
3	Overcoming the strength-ductility trade-off by the combination of static recrystallization and low-temperature heat-treatment in Co-Cr-W-Ni alloy for stent application. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 766, 138400.	5.6	21
4	Microstructural Changes During Plastic Deformation and Corrosion Properties of Biomedical Co-20Cr-15W-10Ni Alloy Heat-Treated at 873ÂK. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 2393-2404.	2.2	18
5	Synchronous improvement in strength and ductility of biomedical Co–Cr–Mo alloys by unique low-temperature heat treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 739, 53-61.	5.6	16
6	Changes in Microstructure of Biomedical Co-Cr-Mo Alloys during Aging at 973 to 1373 K. Materials Transactions, 2016, 57, 2048-2053.	1.2	14
7	Precipitate Phases and Mechanical Properties of Heat-Treated ASTM F 90 Co-Cr-W-Ni Alloy. Key Engineering Materials, 0, 616, 258-262.	0.4	7
8	Precipitation during γ-ε Phase Transformation in Biomedical Co-Cr-Mo Alloys Fabricated by Electron Beam Melting. Metals, 2020, 10, 71.	2.3	7
9	Improvement of Mechanical Properties by Microstructural Evolution of Biomedical Co–Cr–W–Ni Alloys with the Addition of Mn and Si. Materials Transactions, 2021, 62, 229-238.	1.2	7
10	Development of Low-Yield Stress Co–Cr–W–Ni Alloy by Adding 6 Mass Pct Mn for Balloon-Expandable Stents. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 4137-4145.	2.2	4
11	Differences in the effect of surface texturing on the wear loss of β-type Ti–Nb–Ta–Zr and (α+β)-type Ti–6Al–4V ELI alloys in contact with zirconia in physiological saline solution. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 124, 104808.	3.1	4
12	Improvement of Strength and Ductility by Combining Static Recrystallization and Unique Heat Treatment in Co-20Cr-15W-10Ni Alloy for Stent Application. Materials Science Forum, 0, 1016, 1503-1509.	0.3	0
13	Mechanical properties of biomedical 316L stainless steel plates with in-plane orthogonal anisotropy by aligning crystallographical orientation via additive manufacturing. Transactions of the ISME (in) Ti FTOo1 1.0.7	343 h49rσB	T /Overlock i