Alex K-Y Jen

List of Publications by Citations

Source: https://exaly.com/author-pdf/11521256/alex-k-y-jen-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 610
 51,788
 119
 200

 papers
 citations
 h-index
 g-index

 631
 57,016
 11.5
 8

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
610	Non-fullerene acceptors for organic solar cells. <i>Nature Reviews Materials</i> , 2018 , 3,	73.3	1634
609	Molecular biomimetics: nanotechnology through biology. <i>Nature Materials</i> , 2003 , 2, 577-85	27	1353
608	Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. <i>Advanced Materials</i> , 2014 , 26, 3748-54	24	1242
607	Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. <i>Energy and Environmental Science</i> , 2012 , 5, 5994	35.4	903
606	Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications. <i>Nature</i> , 1997 , 388, 845-851	50.4	896
605	Interface Engineering for Organic Electronics. <i>Advanced Functional Materials</i> , 2010 , 20, 1371-1388	15.6	806
604	Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer. <i>Applied Physics Letters</i> , 2008 , 92, 253301	3.4	737
603	High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer. <i>Advanced Materials</i> , 2015 , 27, 695-701	24	655
602	Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells. <i>Energy and Environmental Science</i> , 2015 , 8, 1160-1189	35.4	637
601	Heterojunction modification for highly efficient organic-inorganic perovskite solar cells. <i>ACS Nano</i> , 2014 , 8, 12701-9	16.7	546
600	High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. <i>Nano Letters</i> , 2013 , 13, 3124-8	11.5	545
599	Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer. <i>Nano Letters</i> , 2006 , 6, 463-7	11.5	448
598	Polymer Solar Cells That Use Self-Assembled-Monolayer- Modified ZnO/Metals as Cathodes. <i>Advanced Materials</i> , 2008 , 20, 2376-2382	24	446
597	Functional fullerenes for organic photovoltaics. <i>Journal of Materials Chemistry</i> , 2012 , 22, 4161		417
596	Fluoro-Substituted n-Type Conjugated Polymers for Additive-Free All-Polymer Bulk Heterojunction Solar Cells with High Power Conversion Efficiency of 6.71. <i>Advanced Materials</i> , 2015 , 27, 3310-7	24	400
595	Dopant-Free Hole-Transporting Material with a C3h Symmetrical Truxene Core for Highly Efficient Perovskite Solar Cells. <i>Journal of the American Chemical Society</i> , 2016 , 138, 2528-31	16.4	395
594	Pinhole-Free and Surface-Nanostructured NiOx Film by Room-Temperature Solution Process for High-Performance Flexible Perovskite Solar Cells with Good Stability and Reproducibility. <i>ACS Nano</i> , 2016 , 10, 1503-11	16.7	390

(2010-2016)

593	Enhanced Efficiency and Stability of Inverted Perovskite Solar Cells Using Highly Crystalline SnO2 Nanocrystals as the Robust Electron-Transporting Layer. <i>Advanced Materials</i> , 2016 , 28, 6478-84	24	382	
592	The role of spin in the kinetic control of recombination in organic photovoltaics. <i>Nature</i> , 2013 , 500, 435	5-950.4	379	
591	Integrated molecular, interfacial, and device engineering towards high-performance non-fullerene based organic solar cells. <i>Advanced Materials</i> , 2014 , 26, 5708-14	24	366	
590	A Low-Temperature, Solution-Processable, Cu-Doped Nickel Oxide Hole-Transporting Layer via the Combustion Method for High-Performance Thin-Film Perovskite Solar Cells. <i>Advanced Materials</i> , 2015 , 27, 7874-80	24	348	
589	Efficient Polymer Solar Cells Based on the Copolymers of Benzodithiophene and Thienopyrroledione. <i>Chemistry of Materials</i> , 2010 , 22, 2696-2698	9.6	334	
588	Role of chloride in the morphological evolution of organo-lead halide perovskite thin films. <i>ACS Nano</i> , 2014 , 8, 10640-54	16.7	328	
587	Interfacial modification to improve inverted polymer solar cells. <i>Journal of Materials Chemistry</i> , 2008 , 18, 5113		323	
586	Dithienopicenocarbazole-Based Acceptors for Efficient Organic Solar Cells with Optoelectronic Response Over 1000 nm and an Extremely Low Energy Loss. <i>Journal of the American Chemical Society</i> , 2018 , 140, 2054-2057	16.4	322	
585	Improved charge transport and absorption coefficient in indacenodithieno[3,2-b]thiophene-based ladder-type polymer leading to highly efficient polymer solar cells. <i>Advanced Materials</i> , 2012 , 24, 6356-	6 7 4	319	
584	Development of new conjugated polymers with donor-pi-bridge-acceptor side chains for high performance solar cells. <i>Journal of the American Chemical Society</i> , 2009 , 131, 13886-7	16.4	310	
583	Indacenodithiophene and Quinoxaline-Based Conjugated Polymers for Highly Efficient Polymer Solar Cells. <i>Chemistry of Materials</i> , 2011 , 23, 2289-2291	9.6	303	
582	Enhanced Environmental Stability of Planar Heterojunction Perovskite Solar Cells Based on Blade-Coating. <i>Advanced Energy Materials</i> , 2015 , 5, 1401229	21.8	278	
581	Semi-transparent polymer solar cells with 6% PCE, 25% average visible transmittance and a color rendering index close to 100 for power generating window applications. <i>Energy and Environmental Science</i> , 2012 , 5, 9551	35.4	278	
580	C60 as an Efficient n-Type Compact Layer in Perovskite Solar Cells. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 2399-405	6.4	271	
579	High performance ambient processed inverted polymer solar cells through interfacial modification with a fullerene self-assembled monolayer. <i>Applied Physics Letters</i> , 2008 , 93, 233304	3.4	271	
578	Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials. <i>Journal of Applied Physics</i> , 2011 , 109, 043505-043505-5	2.5	269	
577	Ultralarge and thermally stable electro-optic activities from supramolecular self-assembled molecular glasses. <i>Journal of the American Chemical Society</i> , 2007 , 129, 488-9	16.4	266	
576	A Review on the Development of the Inverted Polymer Solar Cell Architecture. <i>Polymer Reviews</i> , 2010 , 50, 474-510	14	262	

575	Binary-metal perovskites toward high-performance planar-heterojunction hybrid solar cells. <i>Advanced Materials</i> , 2014 , 26, 6454-60	24	259
574	High-Performance Fully Printable Perovskite Solar Cells via Blade-Coating Technique under the Ambient Condition. <i>Advanced Energy Materials</i> , 2015 , 5, 1500328	21.8	257
573	Roles of Fullerene-Based Interlayers in Enhancing the Performance of Organometal Perovskite Thin-Film Solar Cells. <i>Advanced Energy Materials</i> , 2015 , 5, 1402321	21.8	255
57 ²	The Important Role of Heteroaromatics in the Design of Efficient Second-Order Nonlinear Optical Molecules: Theoretical Investigation on Push Bull Heteroaromatic Stilbenes. <i>Journal of the American Chemical Society</i> , 1996 , 118, 12443-12448	16.4	255
571	Stable Low-Bandgap Pb-Sn Binary Perovskites for Tandem Solar Cells. <i>Advanced Materials</i> , 2016 , 28, 89	9 <u>0</u> -β99	7254
570	Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells. <i>Applied Physics Letters</i> , 2010 , 96, 203301	3.4	254
569	Toward Perovskite Solar Cell Commercialization: A Perspective and Research Roadmap Based on Interfacial Engineering. <i>Advanced Materials</i> , 2018 , 30, e1800455	24	244
568	Highly Efficient Blue-Light-Emitting Diodes from Polyfluorene Containing Bipolar Pendant Groups. <i>Macromolecules</i> , 2003 , 36, 6698-6703	5.5	243
567	Highly Efficient Organic Solar Cells with Improved Vertical Donor-Acceptor Compositional Gradient Via an Inverted Off-Center Spinning Method. <i>Advanced Materials</i> , 2016 , 28, 967-74	24	240
566	Indium tin oxide-free semi-transparent inverted polymer solar cells using conducting polymer as both bottom and top electrodes. <i>Organic Electronics</i> , 2009 , 10, 1401-1407	3.5	239
565	Mixed Cation FAxPEA1NPbI3 with Enhanced Phase and Ambient Stability toward High-Performance Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2017 , 7, 1601307	21.8	237
564	Defect Passivation of OrganicIhorganic Hybrid Perovskites by Diammonium Iodide toward High-Performance Photovoltaic Devices. <i>ACS Energy Letters</i> , 2016 , 1, 757-763	20.1	237
563	Over 12% Efficiency Nonfullerene All-Small-Molecule Organic Solar Cells with Sequentially Evolved Multilength Scale Morphologies. <i>Advanced Materials</i> , 2019 , 31, e1807842	24	228
562	Rational Design of Advanced Thermoelectric Materials. <i>Advanced Energy Materials</i> , 2013 , 3, 549-565	21.8	225
561	Increased open circuit voltage in fluorinated benzothiadiazole-based alternating conjugated polymers. <i>Chemical Communications</i> , 2011 , 47, 11026-8	5.8	225
560	CuGaO: A Promising Inorganic Hole-Transporting Material for Highly Efficient and Stable Perovskite Solar Cells. <i>Advanced Materials</i> , 2017 , 29, 1604984	24	222
559	Rigidifying Nonplanar Perylene Diimides by Ring Fusion Toward Geometry-Tunable Acceptors for High-Performance Fullerene-Free Solar Cells. <i>Advanced Materials</i> , 2016 , 28, 951-8	24	222
558	Doping of fullerenes via anion-induced electron transfer and its implication for surfactant facilitated high performance polymer solar cells. <i>Advanced Materials</i> , 2013 , 25, 4425-30	24	220

(2016-2002)

557	Highly Efficient Fluorene- and Benzothiadiazole-Based Conjugated Copolymers for Polymer Light-Emitting Diodes. <i>Macromolecules</i> , 2002 , 35, 6094-6100	5.5	214
556	Highly Efficient Perovskite-Perovskite Tandem Solar Cells Reaching 80% of the Theoretical Limit in Photovoltage. <i>Advanced Materials</i> , 2017 , 29, 1702140	24	210
555	Highly efficient and thermally stable nonlinear optical dendrimer for electrooptics. <i>Journal of the American Chemical Society</i> , 2001 , 123, 986-7	16.4	207
554	Divalent osmium complexes: synthesis, characterization, strong red phosphorescence, and electrophosphorescence. <i>Journal of the American Chemical Society</i> , 2002 , 124, 14162-72	16.4	200
553	Suppressed charge recombination in inverted organic photovoltaics via enhanced charge extraction by using a conductive fullerene electron transport layer. <i>Advanced Materials</i> , 2014 , 26, 6262-7	24	198
552	Enhancement of Aggregation-Induced Emission in Dye-Encapsulating Polymeric Micelles for Bioimaging. <i>Advanced Functional Materials</i> , 2010 , 20, 1413-1423	15.6	198
551	Surface doping of conjugated polymers by graphene oxide and its application for organic electronic devices. <i>Advanced Materials</i> , 2011 , 23, 1903-8	24	190
550	A Simple and Effective Way of Achieving Highly Efficient and Thermally Stable Bulk-Heterojunction Polymer Solar Cells Using Amorphous Fullerene Derivatives as Electron Acceptor. <i>Chemistry of Materials</i> , 2009 , 21, 2598-2600	9.6	185
549	Regulating Surface Termination for Efficient Inverted Perovskite Solar Cells with Greater Than 23% Efficiency. <i>Journal of the American Chemical Society</i> , 2020 , 142, 20134-20142	16.4	185
548	High-Performance Semitransparent Perovskite Solar Cells with 10% Power Conversion Efficiency and 25% Average Visible Transmittance Based on Transparent CuSCN as the Hole-Transporting Material. <i>Advanced Energy Materials</i> , 2015 , 5, 1500486	21.8	181
547	Two-Dimensional Perovskite Solar Cells with 14.1% Power Conversion Efficiency and 0.68% External Radiative Efficiency. <i>ACS Energy Letters</i> , 2018 , 3, 2086-2093	20.1	180
546	Enhanced Open-Circuit Voltage in High Performance Polymer/Fullerene Bulk-Heterojunction Solar Cells by Cathode Modification with a C60 Surfactant. <i>Advanced Energy Materials</i> , 2012 , 2, 82-86	21.8	180
545	Tailor-Making Low-Cost Spiro[fluorene-9,9?-xanthene]-Based 3D Oligomers for Perovskite Solar Cells. <i>CheM</i> , 2017 , 2, 676-687	16.2	176
544	High Performance Amorphous Metallated Econjugated Polymers for Field-Effect Transistors and Polymer Solar Cells. <i>Chemistry of Materials</i> , 2008 , 20, 5734-5736	9.6	175
543	Significant Improved Performance of Photovoltaic Cells Made from a Partially Fluorinated Cyclopentadithiophene/Benzothiadiazole Conjugated Polymer. <i>Macromolecules</i> , 2012 , 45, 5427-5435	5.5	173
542	Synthesis and Optoelectronic Properties of Starlike Polyfluorenes with a Silsesquioxane Core. <i>Macromolecules</i> , 2004 , 37, 2335-2341	5.5	172
541	Novel Oxadiazole-Containing Polyfluorene with Efficient Blue Electroluminescence. <i>Chemistry of Materials</i> , 2003 , 15, 269-274	9.6	170
540	Current Challenges and Prospective Research for Upscaling Hybrid Perovskite Photovoltaics. Journal of Physical Chemistry Letters, 2016 , 7, 811-9	6.4	165

539	Low-temperature processed high-performance flexible perovskite solar cells via rationally optimized solvent washing treatments. <i>RSC Advances</i> , 2014 , 4, 62971-62977	3.7	160
538	Non-halogenated solvents for environmentally friendly processing of high-performance bulk-heterojunction polymer solar cells. <i>Energy and Environmental Science</i> , 2013 , 6, 3241	35.4	160
537	Molecular Engineered Hole-Extraction Materials to Enable Dopant-Free, Efficient p-i-n Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2017 , 7, 1700012	21.8	159
536	Interfacial engineering of ultrathin metal film transparent electrode for flexible organic photovoltaic cells. <i>Advanced Materials</i> , 2014 , 26, 3618-23	24	159
535	Highly Efficient Organic Solar Cells Based on S,N-Heteroacene Non-Fullerene Acceptors. <i>Chemistry of Materials</i> , 2018 , 30, 5429-5434	9.6	158
534	Effect of Chemical Modification of Fullerene-Based Self-Assembled Monolayers on the Performance of Inverted Polymer Solar Cells. <i>ACS Applied Materials & Description (Control of the Performance of Inverted Polymer Solar Cells)</i>	1 2 9·5	157
533	Design of a Highly Crystalline Low-Band Gap Fused-Ring Electron Acceptor for High-Efficiency Solar Cells with Low Energy Loss. <i>Chemistry of Materials</i> , 2017 , 29, 8369-8376	9.6	156
532	Stabilized Wide Bandgap Perovskite Solar Cells by Tin Substitution. <i>Nano Letters</i> , 2016 , 16, 7739-7747	11.5	155
531	Systematic study of the structure-property relationship of a series of ferrocenyl nonlinear optical chromophores. <i>Journal of the American Chemical Society</i> , 2005 , 127, 2758-66	16.4	155
530	Inorganic CsPb1⊠SnxIBr2 for Efficient Wide-Bandgap Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2018 , 8, 1800525	21.8	154
529	Self-assembled monolayer modified ZnO/metal bilayer cathodes for polymer/fullerene bulk-heterojunction solar cells. <i>Applied Physics Letters</i> , 2008 , 92, 193313	3.4	153
528	Functionalized thiophenes: second-order nonlinear optical materials. <i>Journal of the Chemical Society Chemical Communications</i> , 1993 , 90		153
527	Effects of formamidinium and bromide ion substitution in methylammonium lead triiodide toward high-performance perovskite solar cells. <i>Nano Energy</i> , 2016 , 22, 328-337	17.1	152
526	Realizing Efficient Lead-Free Formamidinium Tin Triiodide Perovskite Solar Cells via a Sequential Deposition Route. <i>Advanced Materials</i> , 2018 , 30, 1703800	24	151
525	Rational Design of Dipolar Chromophore as an Efficient Dopant-Free Hole-Transporting Material for Perovskite Solar Cells. <i>Journal of the American Chemical Society</i> , 2016 , 138, 11833-9	16.4	150
524	10.4% Power Conversion Efficiency of ITO-Free Organic Photovoltaics Through Enhanced Light Trapping Configuration. <i>Advanced Energy Materials</i> , 2015 , 5, 1500406	21.8	150
523	Highly Efficient Polymer White-Light-Emitting Diodes Based on Lithium Salts Doped Electron Transporting Layer. <i>Advanced Materials</i> , 2009 , 21, 361-365	24	150
522	Effective interfacial layer to enhance efficiency of polymer solar cells via solution-processed fullerene-surfactants. <i>Journal of Materials Chemistry</i> , 2012 , 22, 8574		149

(2000-2017)

521	Highly Efficient Porphyrin-Based OPV/Perovskite Hybrid Solar Cells with Extended Photoresponse and High Fill Factor. <i>Advanced Materials</i> , 2017 , 29, 1703980	24	148
520	Crosslinkable hole-transporting materials for solution processed polymer light-emitting diodes. Journal of Materials Chemistry, 2008 , 18, 4495		147
519	Large Electro-optic Activity and Enhanced Thermal Stability from Diarylaminophenyl-Containing High-Monlinear Optical Chromophores. <i>Chemistry of Materials</i> , 2007 , 19, 1154-1163	9.6	147
518	Nanoscale Architectural Control and Macromolecular Engineering of Nonlinear Optical Dendrimers and Polymers for Electro-Optics <i>Journal of Physical Chemistry B</i> , 2004 , 108, 8523-8530	3.4	146
517	Toward All Room-Temperature, Solution-Processed, High-Performance Planar Perovskite Solar Cells: A New Scheme of Pyridine-Promoted Perovskite Formation. <i>Advanced Materials</i> , 2017 , 29, 160469	34	142
516	Flexible and twistable non-volatile memory cell array with all-organic one diode-one resistor architecture. <i>Nature Communications</i> , 2013 , 4, 2707	17.4	141
515	Donor Acceptor Thiolated Polyenic Chromophores Exhibiting Large Optical Nonlinearity and Excellent Photostability. <i>Chemistry of Materials</i> , 2008 , 20, 5047-5054	9.6	141
514	Novel push-pull thiophenes for second order nonlinear optical applications. <i>Tetrahedron Letters</i> , 1993 , 34, 1747-1750	2	140
513	A Non-fullerene Acceptor with Enhanced Intermolecular Ecore Interaction for High-Performance Organic Solar Cells. <i>Journal of the American Chemical Society</i> , 2020 , 142, 15246-15251	16.4	138
512	Molecular Weight Effect on the Absorption, Charge Carrier Mobility, and Photovoltaic Performance of an Indacenodiselenophene-Based Ladder-Type Polymer. <i>Chemistry of Materials</i> , 2013 , 25, 3188-3195	9.6	137
511	Adding a Third Component with Reduced Miscibility and Higher LUMO Level Enables Efficient Ternary Organic Solar Cells. <i>ACS Energy Letters</i> , 2020 , 5, 2711-2720	20.1	137
510	The roles of alkyl halide additives in enhancing perovskite solar cell performance. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 9058-9062	13	135
509	Current-Induced Phase Segregation in Mixed Halide Hybrid Perovskites and its Impact on Two-Terminal Tandem Solar Cell Design. <i>ACS Energy Letters</i> , 2017 , 2, 1841-1847	20.1	135
508	Modulation of PEDOT:PSS pH for Efficient Inverted Perovskite Solar Cells with Reduced Potential Loss and Enhanced Stability. <i>ACS Applied Materials & Interfaces</i> , 2016 , 8, 32068-32076	9.5	132
507	Theory-guided design and synthesis of multichromophore dendrimers: an analysis of the electro-optic effect. <i>Journal of the American Chemical Society</i> , 2007 , 129, 7523-30	16.4	132
506	Effect of Cyano Substituents on Electron Affinity and Electron-Transporting Properties of Conjugated Polymers. <i>Macromolecules</i> , 2002 , 35, 3532-3538	5.5	132
505	⊞Phosphonic Acid Organic Monolayer/Sol¶el Hafnium Oxide Hybrid Dielectrics for Low-Voltage Organic Transistors. <i>Advanced Materials</i> , 2008 , 20, 3697-3701	24	129
504	Triarylamine-Containing Poly(perfluorocyclobutane) as Hole-Transporting Material for Polymer Light-Emitting Diodes. <i>Macromolecules</i> , 2000 , 33, 3514-3517	5.5	128

503	Ag-Incorporated Organic-Inorganic Perovskite Films and Planar Heterojunction Solar Cells. <i>Nano Letters</i> , 2017 , 17, 3231-3237	11.5	127
502	Facile Approach to Nonlinear Optical Side-Chain Aromatic Polyimides with Large Second-Order Nonlinearity and Thermal Stability. <i>Journal of the American Chemical Society</i> , 1995 , 117, 7295-7296	16.4	126
501	Two-Step Synthesis of Side-Chain Aromatic Polyimides for Second-Order Nonlinear Optics. <i>Macromolecules</i> , 1996 , 29, 535-539	5.5	126
500	Toward High-Performance Semi-Transparent Polymer Solar Cells: Optimization of Ultra-Thin Light Absorbing Layer and Transparent Cathode Architecture. <i>Advanced Energy Materials</i> , 2013 , 3, 417-423	21.8	123
499	Ternary non-fullerene polymer solar cells with 13.51% efficiency and a record-high fill factor of 78.13%. <i>Energy and Environmental Science</i> , 2018 , 11, 3392-3399	35.4	122
498	Rational molecular design and supramolecular assembly of highly efficient organic electro-optic materials. <i>Journal of Materials Chemistry</i> , 2009 , 19, 7410		122
497	Dramatically enhanced second-order nonlinear optical susceptibilities in tricyanovinylthiophene derivatives. <i>Journal of the Chemical Society Chemical Communications</i> , 1993 , 1118		122
496	Multifunctional phosphonic acid self-assembled monolayers on metal oxides as dielectrics, interface modification layers and semiconductors for low-voltage high-performance organic field-effect transistors. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 14110-26	3.6	121
495	Efficient Green-Light-Emitting Diodes from Silole-Containing Copolymers. <i>Chemistry of Materials</i> , 2003 , 15, 3496-3500	9.6	121
494	Ascorbic acid as an effective antioxidant additive to enhance the efficiency and stability of Pb/Sn-based binary perovskite solar cells. <i>Nano Energy</i> , 2017 , 34, 392-398	17.1	120
493	Highly Efficient Inverted Organic Solar Cells Through Material and Interfacial Engineering of Indacenodithieno[3,2-b]thiophene-Based Polymers and Devices. <i>Advanced Functional Materials</i> , 2014 , 24, 1465-1473	15.6	120
492	SrCl Derived Perovskite Facilitating a High Efficiency of 16% in Hole-Conductor-Free Fully Printable Mesoscopic Perovskite Solar Cells. <i>Advanced Materials</i> , 2017 , 29, 1606608	24	119
491	Synthesis and characterization of highly efficient and thermally stable diphenylamino-substituted thiophene stilbene chromophores for nonlinear optical applications. <i>Advanced Materials</i> , 1997 , 9, 132-1	3 ²⁵⁴	119
490	2D metal-organic framework for stable perovskite solar cells with minimized lead leakage. <i>Nature Nanotechnology</i> , 2020 , 15, 934-940	28.7	119
489	Effects of Self-Assembled Monolayer Modification of Nickel Oxide Nanoparticles Layer on the Performance and Application of Inverted Perovskite Solar Cells. <i>ChemSusChem</i> , 2017 , 10, 3794-3803	8.3	116
488	DielsAlder Click ChemistryFor Highly Efficient Electrooptic Polymers. <i>Macromolecules</i> , 2006 , 39, 1676-1	6 8 9	116
487	Improved efficiency and stability of PbBn binary perovskite solar cells by Cs substitution. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 17939-17945	13	115
486	Optical design of transparent thin metal electrodes to enhance in-coupling and trapping of light in flexible polymer solar cells. <i>Advanced Materials</i> , 2012 , 24, 6362-7	24	115

485	Solution-processible highly conducting fullerenes. Advanced Materials, 2013, 25, 2457-61	24	113
484	A copper-doped nickel oxide bilayer for enhancing efficiency and stability of hysteresis-free inverted mesoporous perovskite solar cells. <i>Nano Energy</i> , 2017 , 40, 155-162	17.1	112
483	High Efficiency (15.8%) All-Polymer Solar Cells Enabled by a Regioregular Narrow Bandgap Polymer Acceptor. <i>Journal of the American Chemical Society</i> , 2021 , 143, 2665-2670	16.4	112
482	Systematic Nanoengineering of Soft Matter Organic Electro-optic Materials © <i>Chemistry of Materials</i> , 2011 , 23, 430-445	9.6	111
481	High-Efficiency Polymer Solar Cells Achieved by Doping Plasmonic Metallic Nanoparticles into Dual Charge Selecting Interfacial Layers to Enhance Light Trapping. <i>Advanced Energy Materials</i> , 2013 , 3, 666-	6 7 3 ⁸	109
480	High-Performance Planar-Heterojunction Solar Cells Based on Ternary Halide Large-Band-Gap Perovskites. <i>Advanced Energy Materials</i> , 2015 , 5, 1400960	21.8	108
479	CH activation: making diketopyrrolopyrrole derivatives easily accessible. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 2795	13	108
478	Binary Chromophore Systems in Nonlinear Optical Dendrimers and Polymers for Large Electrooptic Activities. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 8091-8098	3.8	108
477	A General Route to Enhance Polymer Solar Cell Performance using Plasmonic Nanoprisms. <i>Advanced Energy Materials</i> , 2014 , 4, 1400206	21.8	106
476	Influence of Molecular Geometry of Perylene Diimide Dimers and Polymers on Bulk Heterojunction Morphology Toward High-Performance Nonfullerene Polymer Solar Cells. <i>Advanced Functional Materials</i> , 2015 , 25, 5326-5332	15.6	106
475	Synthesis, Characterization, Charge Transport, and Photovoltaic Properties of Dithienobenzoquinoxaline- and Dithienobenzopyridopyrazine-Based Conjugated Polymers. <i>Macromolecules</i> , 2011 , 44, 4752-4758	5.5	106
474	Conjugated polymers based on C, Si and N-bridged dithiophene and thienopyrroledione units: synthesis, field-effect transistors and bulk heterojunction polymer solar cells. <i>Journal of Materials Chemistry</i> , 2011 , 21, 3895		105
473	GuestHost Cooperativity in Organic Materials Greatly Enhances the Nonlinear Optical Response. Journal of Physical Chemistry C, 2008 , 112, 4355-4363	3.8	105
472	Anode modification of inverted polymer solar cells using graphene oxide. <i>Applied Physics Letters</i> , 2010 , 97, 203306	3.4	104
471	Thermally Cross-Linkable Hole-Transporting Materials on Conducting Polymer: Synthesis, Characterization, and Applications for Polymer Light-Emitting Devices. <i>Chemistry of Materials</i> , 2008 , 20, 413-422	9.6	104
470	Ideal Bandgap Organic-Inorganic Hybrid Perovskite Solar Cells. <i>Advanced Materials</i> , 2017 , 29, 1704418	24	103
469	Near-Infrared Electron Acceptors with Fluorinated Regioisomeric Backbone for Highly Efficient Polymer Solar Cells. <i>Advanced Materials</i> , 2018 , 30, e1803769	24	102
468	Low-Temperature Solution-Processed CuCrO2 Hole-Transporting Layer for Efficient and Photostable Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2018 , 8, 1702762	21.8	100

467	An Electron Acceptor with Broad Visible NIR Absorption and Unique Solid State Packing for As-Cast High Performance Binary Organic Solar Cells. <i>Advanced Functional Materials</i> , 2018 , 28, 1802324	15.6	99
466	A Versatile Fluoro-Containing Low-Bandgap Polymer for Efficient Semitransparent and Tandem Polymer Solar Cells. <i>Advanced Functional Materials</i> , 2013 , 23, 5084-5090	15.6	98
465	Benzobis(silolothiophene)-Based Low Bandgap Polymers for Efficient Polymer Solar Cells <i>Chemistry of Materials</i> , 2011 , 23, 765-767	9.6	98
464	Highly Efficient, Thermally and Chemically Stable Second Order Nonlinear Optical Chromophores Containing a 2-Phenyl-tetracyanobutadienyl Acceptor. <i>Journal of the American Chemical Society</i> , 1999 , 121, 472-473	16.4	98
463	Design of a versatile interconnecting layer for highly efficient series-connected polymer tandem solar cells. <i>Energy and Environmental Science</i> , 2015 , 8, 1712-1718	35.4	97
462	A Side-Chain Dendronized Nonlinear Optical Polyimide with Large and Thermally Stable Electrooptic Activity. <i>Macromolecules</i> , 2004 , 37, 248-250	5.5	97
461	Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides. <i>Optics Letters</i> , 2011 , 36, 882-4	3	96
460	Electron-Rich Alcohol-Soluble Neutral Conjugated Polymers as Highly Efficient Electron-Injecting Materials for Polymer Light-Emitting Diodes. <i>Advanced Functional Materials</i> , 2009 , 19, 2457-2466	15.6	96
459	Large electro-optic activity and low optical loss derived from a highly fluorinated dendritic nonlinear optical chromophore. <i>Chemical Communications</i> , 2002 , 888-9	5.8	96
458	Reducing Surface Recombination Velocities at the Electrical Contacts Will Improve Perovskite Photovoltaics. <i>ACS Energy Letters</i> , 2019 , 4, 222-227	20.1	96
457	Highly Efficient White Polymer Light-Emitting Diodes Based on Nanometer-Scale Control of the Electron Injection Layer Morphology through Solvent Processing. <i>Advanced Materials</i> , 2008 , 20, 1565-15	5 70	95
456	Tailoring the Functionality of Organic Spacer Cations for Efficient and Stable Quasi-2D Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2019 , 29, 1900221	15.6	94
455	A Low-Temperature, Solution Processable Tin Oxide Electron-Transporting Layer Prepared by the Dual-Fuel Combustion Method for Efficient Perovskite Solar Cells. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600122	4.6	94
454	Eleven-Membered Fused-Ring Low Band-Gap Polymer with Enhanced Charge Carrier Mobility and Photovoltaic Performance. <i>Advanced Functional Materials</i> , 2014 , 24, 3631-3638	15.6	94
453	High-mobility low-bandgap conjugated copolymers based on indacenodithiophene and thiadiazolo[3,4-c]pyridine units for thin film transistor and photovoltaic applications. <i>Journal of Materials Chemistry</i> , 2011 , 21, 13247		94
452	Hexaazatrinaphthylene Derivatives: Efficient Electron-Transporting Materials with Tunable Energy Levels for Inverted Perovskite Solar Cells. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 8999-900	03 ^{6.4}	94
45 ¹	High-Dielectric Constant Side-Chain Polymers Show Reduced Non-Geminate Recombination in Heterojunction Solar Cells. <i>Advanced Energy Materials</i> , 2014 , 4, 1301857	21.8	93
450	Dielectric surface-controlled low-voltage organic transistors via n-alkyl phosphonic acid self-assembled monolayers on high-k metal oxide. <i>ACS Applied Materials & mp; Interfaces</i> , 2010 , 2, 511-2	28 ^{.5}	93

449	Approaching 16% Efficiency in All-Small-Molecule Organic Solar Cells Based on Ternary Strategy with a Highly Crystalline Acceptor. <i>Joule</i> , 2020 , 4, 2223-2236	27.8	93
448	Supramolecular Self-Assembled Dendritic Nonlinear Optical Chromophores: Fine-Tuning of Arene B erfluoroarene Interactions for Ultralarge Electro-Optic Activity and Enhanced Thermal Stability. <i>Advanced Materials</i> , 2009 , 21, 1976-1981	24	92
447	Pseudohalide-Induced Recrystallization Engineering for CH3NH3PbI3 Film and Its Application in Highly Efficient Inverted Planar Heterojunction Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2018 , 28, 1704836	15.6	92
446	A Low-Temperature, Solution-Processable Organic Electron-Transporting Layer Based on Planar Coronene for High-performance Conventional Perovskite Solar Cells. <i>Advanced Materials</i> , 2016 , 28, 107	8 ² 410	793 ¹
445	4-Tert-butylpyridine Free Organic Hole Transporting Materials for Stable and Efficient Planar Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2017 , 7, 1700683	21.8	91
444	Silicon-polymer hybrid slot waveguide ring-resonator modulator. <i>Optics Express</i> , 2011 , 19, 3952-61	3.3	91
443	Wideband 15THz response using organic electro-optic polymer emitter-sensor pairs at telecommunication wavelengths. <i>Applied Physics Letters</i> , 2008 , 92, 151107	3.4	91
442	Defect Passivation via a Graded Fullerene Heterojunction in Low-Bandgap Pb\(\bar{\textsf{B}} \)n Binary Perovskite Photovoltaics. ACS Energy Letters, \(\begin{align*} \text{2017} \), 2, 2531-2539	20.1	90
441	Synthesis, Characterization, and Photovoltaic Properties of Carbazole-Based Two-Dimensional Conjugated Polymers with Donor-Ebridge-Acceptor Side Chains. <i>Chemistry of Materials</i> , 2010 , 22, 6444-	6452	90
440	Spraycoating of silver nanoparticle electrodes for inverted polymer solar cells. <i>Organic Electronics</i> , 2009 , 10, 719-723	3.5	90
439	Site-Isolated Electro-optic Chromophores Based on Substituted 2,2?-Bis(3,4-propylenedioxythiophene) Econjugated Bridges. <i>Chemistry of Materials</i> , 2008 , 20, 3425-343	49.6	90
438	2-(2?-Hydroxyphenyl)benzoxazole-Containing Two-Photon-Absorbing Chromophores as Sensors for Zinc and Hydroxide Ions. <i>Chemistry of Materials</i> , 2008 , 20, 1977-1987	9.6	90
437	Side-Chain Effect on Cyclopentadithiophene/Fluorobenzothiadiazole-Based Low Band Gap Polymers and Their Applications for Polymer Solar Cells. <i>Macromolecules</i> , 2013 , 46, 5497-5503	5.5	89
436	Graphene oxide nanosheets based organic field effect transistor for nonvolatile memory applications. <i>Applied Physics Letters</i> , 2010 , 97, 023310	3.4	89
435	Thermally Cross-Linkable Hole-Transporting Materials for Improving Hole Injection in Multilayer Blue-Emitting Phosphorescent Polymer Light-Emitting Diodes. <i>Macromolecules</i> , 2008 , 41, 9570-9580	5.5	87
434	Highly Efficient Electrophosphorescent Devices with Saturated Red Emission from a Neutral Osmium Complex. <i>Chemistry of Materials</i> , 2005 , 17, 3532-3536	9.6	87
433	Facile synthesis of a 56E lectron 1,2-dihydromethano-[60] PCBM and its application for thermally stable polymer solar cells. <i>Chemical Communications</i> , 2011 , 47, 10082-4	5.8	86
432	Large and Stable Nonlinear Optical Effects Observed for a Polyimide Covalently Incorporating a Nonlinear Optical Chromophore. <i>Chemistry of Materials</i> , 1994 , 6, 104-106	9.6	86

431	Efficient large guanidinium mixed perovskite solar cells with enhanced photovoltage and low energy losses. <i>Chemical Communications</i> , 2019 , 55, 4315-4318	5.8	85
430	Integrated Photonic Electromagnetic Field Sensor Based on Broadband Bowtie Antenna Coupled Silicon Organic Hybrid Modulator. <i>Journal of Lightwave Technology</i> , 2014 , 32, 3774-3784	4	85
429	Self-assembled Electroactive Phosphonic Acids on ITO: Maximizing Hole-Injection in Polymer Light-Emitting Diodes. <i>Advanced Functional Materials</i> , 2008 , 18, 3964-3971	15.6	85
428	Effect of Initiators on the Kumada Catalyst-Transfer Polycondensation Reaction. <i>Macromolecules</i> , 2009 , 42, 7670-7677	5.5	84
427	Bright red-emitting electrophosphorescent device using osmium complex as a triplet emitter. <i>Applied Physics Letters</i> , 2003 , 83, 776-778	3.4	84
426	Highly Efficient and Stable Perovskite Solar Cells Enabled by All-Crosslinked Charge-Transporting Layers. <i>Joule</i> , 2018 , 2, 168-183	27.8	84
425	Recent advances in molecular design of functional conjugated polymers for high-performance polymer solar cells. <i>Progress in Polymer Science</i> , 2019 , 99, 101175	29.6	83
424	Terthieno[3,2-b]Thiophene (6T) Based Low Bandgap Fused-Ring Electron Acceptor for Highly Efficient Solar Cells with a High Short-Circuit Current Density and Low Open-Circuit Voltage Loss. <i>Advanced Energy Materials</i> , 2018 , 8, 1702831	21.8	82
423	Microcavity-enhanced light-trapping for highly efficient organic parallel tandem solar cells. <i>Advanced Materials</i> , 2014 , 26, 6778-84	24	81
422	Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide. <i>Optics Letters</i> , 2013 , 38, 4931-4	3	81
421	Bright white light electroluminescent devices based on a dye-dispersed polyfluorene derivative. <i>Applied Physics Letters</i> , 2004 , 85, 1116-1118	3.4	81
420	Halogen-free solvent processing for sustainable development of high efficiency organic solar cells. <i>Organic Electronics</i> , 2012 , 13, 2870-2878	3.5	80
419	Directed self-immobilization of alkaline phosphatase on micro-patterned substrates via genetically fused metal-binding peptide. <i>Biotechnology and Bioengineering</i> , 2009 , 103, 696-705	4.9	80
418	Facile synthesis of highly efficient phenyltetraene-based nonlinear optical chromophores for electrooptics. <i>Organic Letters</i> , 2006 , 8, 1387-90	6.2	80
417	Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement. <i>Applied Physics Letters</i> , 2010 , 97, 093304	3.4	79
416	Creating favorable geometries for directing organic photoreactions in alkanethiolate monolayers. <i>Science</i> , 2011 , 331, 1312-5	33.3	79
415	Synthesis, Properties, and Application of New Luminescent Polymers with Both Hole and Electron Injection Abilities for Light-Emitting Devices. <i>Chemistry of Materials</i> , 1999 , 11, 1568-1575	9.6	79
414	Over 17% Efficiency Binary Organic Solar Cells with Photoresponses Reaching 1000 nm Enabled by Selenophene-Fused Nonfullerene Acceptors. <i>ACS Energy Letters</i> , 2021 , 6, 9-15	20.1	79

(2004-2020)

413	Low-Bandgap Porphyrins for Highly Efficient Organic Solar Cells: Materials, Morphology, and Applications. <i>Advanced Materials</i> , 2020 , 32, e1906129	24	78
412	Enhancing Defect Tolerance and Phase Stability of High-Bandgap Perovskites via Guanidinium Alloying. <i>ACS Energy Letters</i> , 2018 , 3, 1261-1268	20.1	78
411	Phenyltetraene-based nonlinear optical chromophores with enhanced chemical stability and electrooptic activity. <i>Organic Letters</i> , 2007 , 9, 4471-4	6.2	78
410	High-Performance Near-IR Photodetector Using Low-Bandgap MA0.5FA0.5Pb0.5Sn0.5I3 Perovskite. <i>Advanced Functional Materials</i> , 2017 , 27, 1701053	15.6	77
409	Intensive Exposure of Functional Rings of a Polymeric Hole-Transporting Material Enables Efficient Perovskite Solar Cells. <i>Advanced Materials</i> , 2018 , 30, e1804028	24	77
408	A 0D/3D Heterostructured All-Inorganic Halide Perovskite Solar Cell with High Performance and Enhanced Phase Stability. <i>Advanced Materials</i> , 2019 , 31, e1904735	24	77
407	High-performance blue light-emitting diode based on a binaphthyl-containing polyfluorene. <i>Applied Physics Letters</i> , 2000 , 76, 1813-1815	3.4	76
406	Tackling Energy Loss for High-Efficiency Organic Solar Cells with Integrated Multiple Strategies. <i>Advanced Materials</i> , 2018 , 30, e1706816	24	75
405	Synthesis of Diarylthiobarbituric acid Chromophores with Enhanced Second-order Optical Nonlinearities and Thermal Stability. <i>Chemistry of Materials</i> , 1994 , 6, 1603-1604	9.6	75
404	High-efficiency light-emitting diodes using neutral surfactants and aluminum cathode. <i>Applied Physics Letters</i> , 2005 , 86, 083504	3.4	74
403	Synthesis and Characterization of a Novel Light-Emitting Polymer Containing Highly Efficient Hole-Transporting Aromatic Diamine. <i>Chemistry of Materials</i> , 1998 , 10, 3301-3304	9.6	74
402	Enhanced Ambient Stability of Efficient Perovskite Solar Cells by Employing a Modified Fullerene Cathode Interlayer. <i>Advanced Science</i> , 2016 , 3, 1600027	13.6	74
401	A Tetraperylene Diimides Based 3D Nonfullerene Acceptor for Efficient Organic Photovoltaics. <i>Advanced Science</i> , 2015 , 2, 1500014	13.6	73
400	Influence of Regio- and Chemoselectivity on the Properties of Fluoro-Substituted Thienothiophene and Benzodithiophene Copolymers. <i>Journal of the American Chemical Society</i> , 2015 , 137, 7616-9	16.4	73
399	Low-voltage organic thin-film transistors with Ephosphonic acid molecular dielectric monolayers. <i>Applied Physics Letters</i> , 2008 , 92, 113303	3.4	73
398	Overcoming the Photovoltage Plateau in Large Bandgap Perovskite Photovoltaics. <i>Nano Letters</i> , 2018 , 18, 3985-3993	11.5	72
397	In-situ Crosslinking and n-Doping of Semiconducting Polymers and Their Application as Efficient Electron-Transporting Materials in Inverted Polymer Solar Cells. <i>Advanced Energy Materials</i> , 2011 , 1, 11	48 ⁻¹ 18	53 ⁷²
396	Resonance enhanced THz generation in electro-optic polymers near the absorption maximum. <i>Applied Physics Letters</i> , 2004 , 85, 5827-5829	3.4	72

395	Two-photon absorbing block copolymer as a nanocarrier for porphyrin: energy transfer and singlet oxygen generation in micellar aqueous solution. <i>Journal of the American Chemical Society</i> , 2007 , 129, 7220-1	16.4	71
394	Ketene dithioacetal as a Electron donor in second-order nonlinear optical chromophores. <i>Journal of the Chemical Society Chemical Communications</i> , 1994 , 1689-1690		71
393	Highly crystalline Zn2SnO4 nanoparticles as efficient electron-transporting layers toward stable inverted and flexible conventional perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 1529	94 ⁻ 1530	07°
392	Thermally crosslinked hole-transporting layers for cascade hole-injection and effective electron-blocking/exciton-confinement in phosphorescent polymer light-emitting diodes. <i>Applied Physics Letters</i> , 2006 , 88, 093505	3.4	7°
391	A Novel Lattice-Hardening Process To Achieve Highly Efficient and Thermally Stable Nonlinear Optical Polymers. <i>Macromolecules</i> , 2004 , 37, 688-690	5.5	69
390	A Binaphthyl-Based Conjugated Polymer for Light-Emitting Diodes. <i>Chemistry of Materials</i> , 2000 , 12, 13-15	9.6	69
389	Improved thin film morphology and bulk-heterojunction solar cell performance through systematic tuning of the surface energy of conjugated polymers. <i>Journal of Materials Chemistry</i> , 2012 , 22, 5587		68
388	Simultaneous Modification of Bottom-Contact Electrode and Dielectric Surfaces for Organic Thin-Film Transistors Through Single-Component Spin-Cast Monolayers. <i>Advanced Functional Materials</i> , 2011 , 21, 1476-1488	15.6	67
387	Highly Fluorinated Trifluorovinyl Aryl Ether Monomers and Perfluorocyclobutane Aromatic Ether Polymers for Optical Waveguide Applications. <i>Macromolecules</i> , 2003 , 36, 8001-8007	5.5	67
386	Di-Spiro-Based Hole-Transporting Materials for Highly Efficient Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2018 , 8, 1800809	21.8	67
385	All-organic photopatterned one diode-one resistor cell array for advanced organic nonvolatile memory applications. <i>Advanced Materials</i> , 2012 , 24, 828-33	24	66
384	Electro-optic modulation in slotted resonant photonic crystal heterostructures. <i>Applied Physics Letters</i> , 2009 , 94, 241107	3.4	66
383	Reinforced Site Isolation Leading to Remarkable Thermal Stability and High Electrooptic Activities in Cross-Linked Nonlinear Optical Dendrimers. <i>Chemistry of Materials</i> , 2008 , 20, 6372-6377	9.6	66
382	Electrooptic Polymer Ring Resonator Modulation up to 165 GHz. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2007 , 13, 104-110	3.8	66
381	Synthesis and Characterization of Highly Efficient, Chemically and Thermally Stable Chromophores with Chromone-Containing Electron Acceptors for NLO Applications. <i>Advanced Materials</i> , 1999 , 11, 452	:-4 1 5	66
380	Highly Efficient Polymer Tandem Cells and Semitransparent Cells for Solar Energy. <i>Advanced Energy Materials</i> , 2014 , 4, 1301645	21.8	65
379	Pyrene and diketopyrrolopyrrole-based oligomers synthesized via direct arylation for OSC applications. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 6765-75	9.5	65
378	Long-Lifetime Polymer Light-Emitting Electrochemical Cells Fabricated with Crosslinked Hole-Transport Layers. <i>Advanced Materials</i> , 2009 , 21, 1972-1975	24	65

377	Red electrophosphorescence from osmium complexes. <i>Applied Physics Letters</i> , 2002 , 80, 713-715	3.4	65
376	High-Efficiency Nonfullerene Organic Solar Cells with a Parallel Tandem Configuration. <i>Advanced Materials</i> , 2017 , 29, 1702547	24	64
375	Quantifying Efficiency Loss of Perovskite Solar Cells by a Modified Detailed Balance Model. <i>Advanced Energy Materials</i> , 2018 , 8, 1701586	21.8	64
374	Tunable Band Gap and Long Carrier Recombination Lifetime of Stable Mixed CH3NH3PbxSn1⊠Br3 Single Crystals. <i>Chemistry of Materials</i> , 2018 , 30, 1556-1565	9.6	63
373	High Performance Optical Modulator Based on Electro-Optic Polymer Filled Silicon Slot Photonic Crystal Waveguide. <i>Journal of Lightwave Technology</i> , 2016 , 34, 2941-2951	4	63
372	Chemically Doped and Cross-linked Hole-Transporting Materials as an Efficient Anode Buffer Layer for Polymer Solar Cells. <i>Chemistry of Materials</i> , 2011 , 23, 5006-5015	9.6	63
371	Steric Stabilization Effects in Nickel-Catalyzed Regioregular Poly(3-hexylthiophene) Synthesis. <i>Macromolecules</i> , 2009 , 42, 9387-9389	5.5	63
370	Room-temperature, solution-processable organic electron extraction layer for high-performance planar heterojunction perovskite solar cells. <i>Nanoscale</i> , 2015 , 7, 17343-9	7.7	62
369	Two-Photon Absorption in Quadrupolar Bis(acceptor)-Terminated Chromophores with Electron-Rich Bis(heterocycle)vinylene Bridges. <i>Chemistry of Materials</i> , 2007 , 19, 432-442	9.6	62
368	Self-assembled monolayers of aromatic thiols stabilized by parallel-displaced pi-pi stacking interactions. <i>Langmuir</i> , 2006 , 22, 3049-56	4	62
367			
	Boosting Photovoltaic Performance for Lead Halide Perovskites Solar Cells with BF4[Anion Substitutions. <i>Advanced Functional Materials</i> , 2019 , 29, 1808833	15.6	62
366		15.6 16.7	
	Substitutions. <i>Advanced Functional Materials</i> , 2019 , 29, 1808833 Plasmonic Metal Nanoparticles with Core-Bishell Structure for High-Performance Organic and		
366	Substitutions. Advanced Functional Materials, 2019, 29, 1808833 Plasmonic Metal Nanoparticles with Core-Bishell Structure for High-Performance Organic and Perovskite Solar Cells. ACS Nano, 2019, 13, 5397-5409 Fluoroalkyl-substituted fullerene/perovskite heterojunction for efficient and ambient stable	16.7	61
366 365	Substitutions. Advanced Functional Materials, 2019, 29, 1808833 Plasmonic Metal Nanoparticles with Core-Bishell Structure for High-Performance Organic and Perovskite Solar Cells. ACS Nano, 2019, 13, 5397-5409 Fluoroalkyl-substituted fullerene/perovskite heterojunction for efficient and ambient stable perovskite solar cells. Nano Energy, 2016, 30, 417-425 Long-Lived, Non-Geminate, Radiative Recombination of Photogenerated Charges in a Polymer/Small-Molecule Acceptor Photovoltaic Blend. Journal of the American Chemical Society,	16.7 17.1	61
366 365 364	Plasmonic Metal Nanoparticles with Core-Bishell Structure for High-Performance Organic and Perovskite Solar Cells. <i>ACS Nano</i> , 2019 , 13, 5397-5409 Fluoroalkyl-substituted fullerene/perovskite heterojunction for efficient and ambient stable perovskite solar cells. <i>Nano Energy</i> , 2016 , 30, 417-425 Long-Lived, Non-Geminate, Radiative Recombination of Photogenerated Charges in a Polymer/Small-Molecule Acceptor Photovoltaic Blend. <i>Journal of the American Chemical Society</i> , 2018 , 140, 9996-10008 Highly Efficient Semitransparent Solar Cells with Selective Absorption and Tandem Architecture.	16.7 17.1 16.4	616161
366 365 364 363	Plasmonic Metal Nanoparticles with Core-Bishell Structure for High-Performance Organic and Perovskite Solar Cells. <i>ACS Nano</i> , 2019 , 13, 5397-5409 Fluoroalkyl-substituted fullerene/perovskite heterojunction for efficient and ambient stable perovskite solar cells. <i>Nano Energy</i> , 2016 , 30, 417-425 Long-Lived, Non-Geminate, Radiative Recombination of Photogenerated Charges in a Polymer/Small-Molecule Acceptor Photovoltaic Blend. <i>Journal of the American Chemical Society</i> , 2018 , 140, 9996-10008 Highly Efficient Semitransparent Solar Cells with Selective Absorption and Tandem Architecture. <i>Advanced Materials</i> , 2019 , 31, e1901683 Strong photocurrent enhancements in highly efficient flexible organic solar cells by adopting a	16.7 17.1 16.4 24	61616161

359	Pseudo-bilayer architecture enables high-performance organic solar cells with enhanced exciton diffusion length. <i>Nature Communications</i> , 2021 , 12, 468	17.4	61
358	Effects of self-assembled monolayer structural order, surface homogeneity and surface energy on pentacene morphology and thin film transistor device performance. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 101-113	7.1	59
357	Spiro-Phenylpyrazole-9,9?-Thioxanthene Analogues as Hole-Transporting Materials for Efficient Planar Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2017 , 7, 1700823	21.8	58
356	Spin-cast and patterned organophosphonate self-assembled monolayer dielectrics on metal-oxide-activated Si. <i>Advanced Materials</i> , 2011 , 23, 1899-902	24	58
355	Low-temperature electrodeposited crystalline SnO2 as an efficient electron-transporting layer for conventional perovskite solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2017 , 164, 47-55	6.4	57
354	Nonhalogen Solvent-Processed Asymmetric Wide-Bandgap Polymers for Nonfullerene Organic Solar Cells with Over 10% Efficiency. <i>Advanced Functional Materials</i> , 2018 , 28, 1706517	15.6	57
353	n-Doping of thermally polymerizable fullerenes as an electron transporting layer for inverted polymer solar cells. <i>Journal of Materials Chemistry</i> , 2011 , 21, 6956		57
352	Polymer triplet energy levels need not limit photocurrent collection in organic solar cells. <i>Journal of the American Chemical Society</i> , 2012 , 134, 19661-8	16.4	56
351	Surface-initiated synthesis of poly(3-methylthiophene) from indium tin oxide and its electrochemical properties. <i>Langmuir</i> , 2012 , 28, 1900-8	4	56
350	High-Performance Inverted Polymer Solar Cells: Device Characterization, Optical Modeling, and Hole-Transporting Modifications. <i>Advanced Functional Materials</i> , 2012 , 22, 2804-2811	15.6	56
349	A Generally Applicable Approach Using Sequential Deposition to Enable Highly Efficient Organic Solar Cells. <i>Small Methods</i> , 2020 , 4, 2000687	12.8	56
348	Directed assembly of single-walled carbon nanotubes via drop-casting onto a UV-patterned photosensitive monolayer. <i>Journal of the American Chemical Society</i> , 2008 , 130, 7226-7	16.4	55
347	Replica-molded electro-optic polymer Machielehnder modulator. <i>Applied Physics Letters</i> , 2004 , 85, 1662-	1 6 64	55
346	Thick TiO2-Based Top Electron Transport Layer on Perovskite for Highly Efficient and Stable Solar Cells. <i>ACS Energy Letters</i> , 2018 , 3, 2891-2898	20.1	55
345	Enhanced Performance of Organic Solar Cells with Increased End Group Dipole Moment in Indacenodithieno[3,2-b]thiophene-Based Molecules. <i>Advanced Functional Materials</i> , 2015 , 25, 4889-489	7 ^{15.6}	54
344	Multi-Selenophene-Containing Narrow Bandgap Polymer Acceptors for All-Polymer Solar Cells with over 15 % Efficiency and High Reproducibility. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 159	3 5 -159	4 ⁵ 3 ⁴
343	Large Grained Perovskite Solar Cells Derived from Single-Crystal Perovskite Powders with Enhanced Ambient Stability. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 14513-20	9.5	54
342	Patterning of robust self-assembled n-type hexaazatrinaphthylene-based nanorods and nanowires by microcontact printing. <i>Journal of the American Chemical Society</i> , 2006 , 128, 13042-3	16.4	53

341	Synthesis and Characterization of a Bipolar Light-Emitting Copolymer Consisting of Tetraphenyldiaminobiphenyl and Bis-Quinoline Units. <i>Chemistry of Materials</i> , 1999 , 11, 27-29	9.6	53
340	A Dopant-Free Polymeric Hole-Transporting Material Enabled High Fill Factor Over 81% for Highly Efficient Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2019 , 9, 1902600	21.8	52
339	Vertical Orientated DionIlacobson Quasi-2D Perovskite Film with Improved Photovoltaic Performance and Stability. <i>Small Methods</i> , 2020 , 4, 1900831	12.8	52
338	40 GHz electro-optic modulation in hybrid silicon-organic slotted photonic crystal waveguides. <i>Optics Letters</i> , 2010 , 35, 2753-5	3	51
337	Silicon-Organic Hybrid (SOH) Mach-Zehnder Modulators for 100 Gbit/s on-off Keying. <i>Scientific Reports</i> , 2018 , 8, 2598	4.9	50
336	Bis-Tridentate Iridium(III) Phosphors with Very High Photostability and Fabrication of Blue-Emitting OLEDs. <i>Advanced Science</i> , 2018 , 5, 1800846	13.6	50
335	Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode. <i>Applied Physics Letters</i> , 2010 , 96, 243311	3.4	50
334	Synthesis, Nanostructure, Functionality, and Application of Polyfluorene-block-poly(N-isopropylacrylamide)s. <i>Macromolecules</i> , 2010 , 43, 282-291	5.5	50
333	Facile Thiol-Ene Thermal Crosslinking Reaction Facilitated Hole-Transporting Layer for Highly Efficient and Stable Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2016 , 6, 1601165	21.8	50
332	Enhanced Moisture Stability of Cesium-Containing Compositional Perovskites by a Feasible Interfacial Engineering. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1700598	4.6	49
331	Study on the formation of self-assembled monolayers on sol-gel processed hafnium oxide as dielectric layers. <i>Langmuir</i> , 2009 , 25, 2140-7	4	49
330	High-Performance Polyquinolines with Pendent High-Temperature Chromophores for Second-Order Nonlinear Optics. <i>Chemistry of Materials</i> , 1998 , 10, 471-473	9.6	49
329	Unexpectedly Slow Yet Efficient Picosecond to Nanosecond Photoinduced Hole-Transfer Occurs in a Polymer/Nonfullerene Acceptor Organic Photovoltaic Blend. <i>ACS Energy Letters</i> , 2018 , 3, 2396-2403	20.1	49
328	Effect of Molecular Orientation of Donor Polymers on Charge Generation and Photovoltaic Properties in Bulk Heterojunction All-Polymer Solar Cells. <i>Advanced Energy Materials</i> , 2017 , 7, 1601365	21.8	48
327	Mesoscale dynamics and cooperativity of networking dendronized nonlinear optical molecular glasses. <i>Nano Letters</i> , 2008 , 8, 754-9	11.5	48
326	Trends in Optical Nonlinearity and Thermal Stability in Electrooptic Chromophores Based upon the 3-(Dicyanomethylene)-2,3-dihydrobenzothiophene-1, 1-dioxide Acceptor <i>Journal of Physical Chemistry B</i> , 2004 , 108, 8626-8630	3.4	48
325	A Novel Class of High-Performance Perfluorocyclobutane-Containing Polymers for Second-Order Nonlinear Optics. <i>Chemistry of Materials</i> , 2000 , 12, 1187-1189	9.6	48
324	Synthesis of second-order nonlinear optical chromophores with enhanced thermal stability and nonlinearity: a conformation-locked trans-polyene approach. <i>Chemical Communications</i> , 1996 , 2279	5.8	48

323	Highly Sensitive Built-In Strain Sensors for Polymer Composites: Fluorescence Turn-On Response through Mechanochemical Activation. <i>Advanced Materials</i> , 2016 , 28, 6592-7	24	48
322	Improved Efficiency and Stability of Pb/Sn Binary Perovskite Solar Cells Fabricated by Galvanic Displacement Reaction. <i>Advanced Energy Materials</i> , 2019 , 9, 1802774	21.8	48
321	Navigating Organo-Lead Halide Perovskite Phase Space via Nucleation Kinetics toward a Deeper Understanding of Perovskite Phase Transformations and Structure-Property Relationships. <i>Small</i> , 2015 , 11, 3088-96	11	47
320	Highly efficient red-electrophosphorescent devices based on polyfluorene copolymers containing charge-transporting pendant units. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 14000-5	3.4	46
319	A new synthetic approach for nonlinear optical chromophores possessing enhanced thermal stability. <i>Tetrahedron Letters</i> , 1996 , 37, 7055-7058	2	46
318	In situ doping and crosslinking of fullerenes to form efficient and robust electron-transporting layers for polymer solar cells. <i>Energy and Environmental Science</i> , 2014 , 7, 638-643	35.4	45
317	A Novel Class of Nonlinear Optical Side-Chain Polymer: Polyquinolines with Large Second-Order Nonlinearity and Thermal Stability. <i>Chemistry of Materials</i> , 1996 , 8, 607-609	9.6	45
316	Functionalized Fused Thiophenes: A New Class of Thermally Stable and Efficient Second-Order Nonlinear Optical Chromophores. <i>Chemistry of Materials</i> , 1994 , 6, 2210-2212	9.6	45
315	Highly efficient red electrophosphorescent devices based on an iridium complex with trifluoromethyl-substituted pyrimidine ligand. <i>Applied Physics Letters</i> , 2004 , 85, 1619-1621	3.4	44
314	Efficient Cyano-Containing Electron-Transporting Polymers for Light-Emitting Diodes. <i>Chemistry of Materials</i> , 2001 , 13, 3820-3822	9.6	44
313	A Convenient Modular Approach of Functionalizing Aromatic Polyquinolines for Electrooptic Devices. <i>Chemistry of Materials</i> , 1999 , 11, 2218-2225	9.6	44
312	Optical Enhancement via Electrode Designs for High-Performance Polymer Solar Cells. <i>Advanced Functional Materials</i> , 2016 , 26, 321-340	15.6	44
311	Fullerene-Anchored Core-Shell ZnO Nanoparticles for Efficient and Stable Dual-Sensitized Perovskite Solar Cells. <i>Joule</i> , 2019 , 3, 417-431	27.8	44
310	Enhanced Light-Harvesting by Integrating Synergetic Microcavity and Plasmonic Effects for High-Performance ITO-Free Flexible Polymer Solar Cells. <i>Advanced Functional Materials</i> , 2015 , 25, 567-	574 ^{5.6}	43
309	Tuning the Kinetics and Energetics of DielsAlder Cycloaddition Reactions to Improve Poling Efficiency and Thermal Stability of High-Temperature Cross-Linked Electro-Optic Polymers. <i>Chemistry of Materials</i> , 2010 , 22, 5601-5608	9.6	43
308	The Effects of Binding Ligand Variation on the Nickel Catalyzed Externally Initiated Polymerization of 2-Bromo-3-hexyl-5-iodothiophene. <i>Macromolecular Chemistry and Physics</i> , 2009 , 210, 1966-1972	2.6	43
307	A highly electroluminescent molecular square. Chemical Communications, 2005, 1002-4	5.8	43
306	New environmentally responsive fluorescent N-isopropylacrylamide copolymer and its application to DNA sensing. <i>Journal of Polymer Science Part A</i> , 2006 , 44, 5495-5504	2.5	43

Indacenodithieno[3,2-b]thiophene-based broad bandgap polymers for high efficiency polymer solar cells. <i>Polymer Chemistry</i> , 2013 , 4, 5220	4.9	42
Highly Efficient UVIII iolet Light-Emitting Polymers Derived from Fluorene and Tetraphenylsilane Derivatives: Molecular Design toward Enhanced Electroluminescent Performance. <i>Macromolecules</i> , 2007 , 40, 3015-3020	5.5	42
Controlled Assembly of Conducting Monomers for Molecular Electronics. <i>Nano Letters</i> , 2003 , 3, 139-142	211.5	42
All-Inorganic CsPbI3 Quantum Dot Solar Cells with Efficiency over 16% by Defect Control. <i>Advanced Functional Materials</i> , 2021 , 31, 2005930	15.6	42
Efficient Inverted Perovskite Solar Cells with Low Voltage Loss Achieved by a Pyridine-Based Dopant-Free Polymer Semiconductor. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 7227-7233	16.4	42
Regio-Specific Selenium Substitution in Non-Fullerene Acceptors for Efficient Organic Solar Cells. <i>Chemistry of Materials</i> , 2019 , 31, 6770-6778	9.6	41
Solution processed inverted tandem polymer solar cells with self-assembled monolayer modified interfacial layers. <i>Applied Physics Letters</i> , 2010 , 97, 253307	3.4	41
Efficient light-emitting diodes based on a binaphthalene-containing polymer. <i>Applied Physics Letters</i> , 1999 , 75, 3745-3747	3.4	41
Dually Fluorescent Sensing of pH and Dissolved Oxygen Using a Membrane Made from Polymerizable Sensing Monomers. <i>Sensors and Actuators B: Chemical</i> , 2010 , 147, 714-722	8.5	40
A Novel Benzoxazole-Containing Poly(N-isopropylacrylamide) Copolymer as a Multifunctional Sensing Material. <i>Macromolecular Rapid Communications</i> , 2007 , 28, 894-899	4.8	40
Synthesis and Characterization of Nonlinear Optical Chromophores with Conformationally Locked Polyenes Possessing Enhanced Thermal Stability. <i>Chemistry of Materials</i> , 1999 , 11, 1628-1632	9.6	40
Mapping Nonfullerene Acceptors with a Novel Wide Bandgap Polymer for High Performance Polymer Solar Cells. <i>Advanced Energy Materials</i> , 2018 , 8, 1801214	21.8	40
On understanding bandgap bowing and optoelectronic quality in PbBn alloy hybrid perovskites. Journal of Materials Chemistry A, 2019, 7, 16285-16293	13	39
A regioregular conjugated polymer for high performance thick-film organic solar cells without processing additive. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 10517-10525	13	38
Supramolecular Assembly of Complementary Cyanine Salt J-Aggregates. <i>Journal of the American Chemical Society</i> , 2015 , 137, 11920-3	16.4	38
Surface-enhanced Raman spectroscopy to probe photoreaction pathways and kinetics of isolated reactants on surfaces: flat versus curved substrates. <i>Nano Letters</i> , 2012 , 12, 5362-8	11.5	38
Sensitivity of titania(B) nanowires to nitroaromatic and nitroamino explosives at room temperature via surface hydroxyl groups. <i>Journal of Materials Chemistry</i> , 2011 , 21, 7269		38
	Highly Efficient UvBriolet Light-Emitting Polymers Derived from Fluorene and Tetraphenylsilane Derivatives: Molecular Design toward Enhanced Electroluminescent Performance. <i>Macromolecules</i> , 2007, 40, 3015-3020 Controlled Assembly of Conducting Monomers for Molecular Electronics. <i>Nano Letters</i> , 2003, 3, 139-14; All-Inorganic CsPbl3 Quantum Dot Solar Cells with Efficiency over 16% by Defect Control. <i>Advanced Functional Materials</i> , 2021, 31, 2005930 Efficient Inverted Perovskite Solar Cells with Low Voltage Loss Achieved by a Pyridine-Based Dopant-Free Polymer Semiconductor. <i>Angewandte Chemie - International Edition</i> , 2021, 60, 7227-7233 Regio-Specific Selenium Substitution in Non-Fullerene Acceptors for Efficient Organic Solar Cells. <i>Chemistry of Materials</i> , 2019, 31, 6770-6778 Solution processed inverted tandem polymer solar cells with self-assembled monolayer modified interfacial layers. <i>Applied Physics Letters</i> , 2010, 97, 253307 Efficient light-emitting diodes based on a binaphthalene-containing polymer. <i>Applied Physics Letters</i> , 1999, 75, 3745-3747 Dually Fluorescent Sensing of pH and Dissolved Oxygen Using a Membrane Made from Polymerizable Sensing Monomers. <i>Sensors and Actuators B: Chemical</i> , 2010, 147, 714-722 A Novel Benzoxazole-Containing Poly(N-isopropylacrylamide) Copolymer as a Multifunctional Sensing Material. <i>Macromolecular Rapid Communications</i> , 2007, 28, 894-899 Synthesis and Characterization of Nonlinear Optical Chromophores with Conformationally Locked Polymers Possessing Enhanced Thermal Stability. <i>Chemistry of Materials</i> , 1999, 11, 1628-1632 Mapping Nonfullerene Acceptors with a Novel Wide Bandgap Polymer for High Performance Polymer Solar Cells. <i>Advanced Energy Materials</i> , 2018, 8, 1801214 On understanding bandgap bowing and optoelectronic quality in PbBn alloy hybrid perovskites. <i>Journal of Materials Chemistry A</i> , 2017, 7, 16285-16293 A regioregular conjugated polymer for high performance thick-film organic solar cells without processing additive. <i>Journal of Materials</i>	Highly Efficient UWilolet Light-Emitting Polymers Derived from Fluorene and Tetraphenylsilane Derivatives: Molecular Design toward Enhanced Electroluminescent Performance. Macromolecules, 2007, 40, 3015-3020 Controlled Assembly of Conducting Monomers for Molecular Electronics. Nano Letters, 2003, 3, 139-14211.5 All-Inorganic CsPbi3 Quantum Dot Solar Cells with Efficiency over 16% by Defect Control. Advanced Functional Materials, 2021, 31, 2005930 Efficient Inverted Perovskite Solar Cells with Low Voltage Loss Achieved by a Pyridine-Based Dopant-Free Polymer Semiconductor. Angewandte Chemie - International Edition, 2021, 60, 7227-7233 16-4 Regio-Specific Selenium Substitution in Non-Fullerene Acceptors for Efficient Organic Solar Cells. Chemistry of Materials, 2019, 31, 6770-6778 Solution processed inverted tandem polymer solar cells with self-assembled monolayer modified interfacial layers. Applied Physics Letters, 2010, 97, 253307 Efficient light-emitting diodes based on a binaphthalene-containing polymer. Applied Physics Letters, 1999, 75, 3745-3747 Dually Fluorescent Sensing of pH and Dissolved Oxygen Using a Membrane Made from Polymerizable Sensing Monomers. Sensors and Actuators B: Chemical, 2010, 147, 714-722 A Novel Benzoxazole-Containing Poly(N-isopropylacrylamide) Copolymer as a Multifunctional Sensing Material. Macromolecular Rapid Communications, 2007, 28, 894-899 Synthesis and Characterization of Nonlinear Optical Chromophores with Conformationally Locked Polymer Solar Cells. Advanced Energy Materials, 2018, 8, 1801214 21.8 Mapping Nonfullerene Acceptors with a Novel Wide Bandgap Polymer for High Performance Polymer Solar Cells. Advanced Energy Materials, 2018, 8, 1801214 On understanding bandgap bowing and optoelectronic quality in PbBn alloy hybrid perovskites. Journal of Materials Chemistry A, 2019, 7, 16285-16293 A regioregular conjugated polymer for high performance thick-film organic solar cells without processing additive. Journal of Materials Chemistry A, 2019, 7, 16285-16293

287	Highly efficient indacenodithiophene-based polymeric solar cells in conventional and inverted device configurations. <i>Organic Electronics</i> , 2011 , 12, 794-801	3.5	38
286	Organic light-emitting diodes using an in situ thermally polymerized hole transporting layer. <i>Applied Physics Letters</i> , 2000 , 76, 2985-2987	3.4	38
285	Open-Circuit Voltage Losses in Selenium-Substituted Organic Photovoltaic Devices from Increased Density of Charge-Transfer States. <i>Chemistry of Materials</i> , 2015 , 27, 6583-6591	9.6	37
284	Ultra-efficient and stable electro-optic dendrimers containing supramolecular homodimers of semifluorinated dipolar aromatics. <i>Materials Chemistry Frontiers</i> , 2018 , 2, 901-909	7.8	37
283	Solution-Processed Low-Bandgap CuIn(S,Se)2 Absorbers for High-Efficiency Single-Junction and Monolithic Chalcopyrite-Perovskite Tandem Solar Cells. <i>Advanced Energy Materials</i> , 2018 , 8, 1801254	21.8	37
282	Boosting the Performance of Environmentally Friendly Quantum Dot-Sensitized Solar Cells over 13% Efficiency by Dual Sensitizers with Cascade Energy Structure. <i>Advanced Materials</i> , 2019 , 31, e19036	5 3 6	37
281	Surface characterization of polythiophene:fullerene blends on different electrodes using near edge X-ray absorption fine structure. <i>ACS Applied Materials & District Materials &</i>	9.5	37
280	Controlled DielsAlder Reactions Used To Incorporate Highly Efficient Polyenic Chromophores into Maleimide-Containing Side-Chain Polymers for Electro-Optics. <i>Macromolecules</i> , 2009 , 42, 2438-2445	5.5	37
279	Theoretical and experimental studies on the surface structures of conjugated rod-coil block copolymer brushes. <i>Langmuir</i> , 2007 , 23, 2805-14	4	37
278	Linear and nonlinear optical properties of a macrocyclic trichromophore bundle with parallel-aligned dipole moments. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 5434-8	3.4	37
277	Highly Efficient Photocurrent Generation from a Self-Assembled Monolayer Film of a Novel C60-Tethered 2,5-Dithienylpyrrole Triad. <i>Chemistry of Materials</i> , 2004 , 16, 5058-5062	9.6	37
276	Room temperature formation of organicIhorganic lead halide perovskites: design of nanostructured and highly reactive intermediates. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 3599-3608	13	36
275	Systematic Doping Control of CVD Graphene Transistors with Functionalized Aromatic Self-Assembled Monolayers. <i>Advanced Functional Materials</i> , 2014 , 24, 3464-3470	15.6	36
274	Achieving excellent electro-optic activity and thermal stability in poled polymers through an expeditious crosslinking process. <i>Journal of Materials Chemistry</i> , 2012 , 22, 951-959		36
273	Surface-plasmon-enhanced fluorescence from periodic quantum dot arrays through distance control using biomolecular linkers. <i>Nanotechnology</i> , 2009 , 20, 015305	3.4	36
272	Design rules for the broad application of fast (. RSC Advances, 2016, 6, 27475-27484	3.7	35
271	Efficient acceptor groups for NLO chromophores: competing inductive and resonance contributions in heterocyclic acceptors derived from 2-dicyanomethylidene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran. <i>Journal of Materials Chemistry</i> ,		35
270	2007, 17, 2944-2949 Assembly of gold nanoparticles using genetically engineered polypeptides. <i>Small</i> , 2005 , 1, 698-702	11	35

269	Dopant-free dicyanofluoranthene-based hole transporting material with low cost enables efficient flexible perovskite solar cells. <i>Nano Energy</i> , 2021 , 82, 105701	17.1	35	
268	Fused selenophene-thieno[3,2-b]thiophene-selenophene (ST)-based narrow-bandgap electron acceptor for efficient organic solar cells with small voltage loss. <i>Chemical Communications</i> , 2019 , 55, 8258-8261	5.8	34	
267	The effect of thieno[3,2-b]thiophene on the absorption, charge mobility and photovoltaic performance of diketopyrrolopyrrole-based low bandgap conjugated polymers. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 7526	7.1	34	
266	Enhanced performance of polymer solar cells using solution-processed tetra-n-alkyl ammonium bromides as electron extraction layers. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 2582	13	34	
265	. Journal of Lightwave Technology, 2011 , 29, 1112-1117	4	34	
264	Threshold voltage control in organic thin film transistors with dielectric layer modified by a genetically engineered polypeptide. <i>Applied Physics Letters</i> , 2010 , 97, 013307	3.4	34	
263	High-performance organic second- and third-order nonlinear optical materials for ultrafast information processing. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 15009-15026	7.1	34	
262	Modulate Organic-Metal Oxide Heterojunction via [1,6] Azafulleroid for Highly Efficient Organic Solar Cells. <i>Advanced Materials</i> , 2016 , 28, 7269-75	24	34	
261	Development of Self-Doped Conjugated Polyelectrolytes with Controlled Work Functions and Application to Hole Transport Layer Materials for High-Performance Organic Solar Cells. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1500703	4.6	34	
2 60	Hybrid Quantum Dot/Organic Heterojunction: A Route to Improve Open-Circuit Voltage in PbS Colloidal Quantum Dot Solar Cells. <i>ACS Energy Letters</i> , 2020 , 5, 2335-2342	20.1	33	
259	As-Cast Ternary Organic Solar Cells Based on an Asymmetric Side-Chains Featured Acceptor with Reduced Voltage Loss and 14.0% Efficiency. <i>Advanced Functional Materials</i> , 2020 , 30, 1909535	15.6	33	
258	Efficient all polymer solar cells from layer-evolved processing of a bilayer inverted structure. Journal of Materials Chemistry C, 2014 , 2, 416-420	7.1	33	
257	Boosting performance of inverted organic solar cells by using a planar coronene based electron-transporting layer. <i>Nano Energy</i> , 2017 , 39, 454-460	17.1	33	
256	High-efficiency and solution processible multilayer white polymer light-emitting diodes using neutral conjugated surfactant as an electron injection layer. <i>Applied Physics Letters</i> , 2008 , 92, 063303	3.4	33	
255	Boosting Efficiency of Near-Infrared Organic Light-Emitting Diodes with Os(II)-Based Pyrazinyl Azolate Emitters. <i>Advanced Functional Materials</i> , 2020 , 30, 1906738	15.6	33	
254	PCBM-doped electro-optic materials: investigation of dielectric, optical and electro-optic properties for highly efficient poling. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 10286-10292	7.1	33	
253	Abnormal Current-Voltage Hysteresis Induced by Reverse Bias in Organic-Inorganic Hybrid Perovskite Photovoltaics. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 995-1003	6.4	32	
252	Silicon-organic hybrid (SOH) modulators for intensity-modulation / direct-detection links with line rates of up to 120 Gbit/s. <i>Optics Express</i> , 2017 , 25, 23784-23800	3.3	32	

251	Trimming of high-Q-factor silicon ring resonators by electron beam bleaching. <i>Optics Letters</i> , 2012 , 37, 3114-6	3	32
250	Minimized surface deficiency on wide-bandgap perovskite for efficient indoor photovoltaics. <i>Nano Energy</i> , 2020 , 78, 105377	17.1	32
249	Enhancing efficiency of perovskite solar cells by reducing defects through imidazolium cation incorporation. <i>Materials Today Energy</i> , 2018 , 7, 161-168	7	31
248	Colloidal CdSe quantum dot electroluminescence: ligands and light-emitting diodes. <i>Mikrochimica Acta</i> , 2008 , 160, 345-350	5.8	31
247	Conjugated Polycyanines: A New Class of Materials with Large Third-Order Optical Nonlinearities. <i>Advanced Optical Materials</i> , 2015 , 3, 900-906	8.1	30
246	Coordination Engineering of Single-Crystal Precursor for Phase Control in Ruddlesden P opper Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2020 , 10, 1904050	21.8	30
245	Solution-processed cross-linkable hole selective layer for polymer solar cells in the inverted structure. <i>Applied Physics Letters</i> , 2010 , 97, 193310	3.4	30
244	Phosphonic acid self-assembled monolayer and amorphous hafnium oxide hybrid dielectric for high performance polymer thin film transistors on plastic substrates. <i>Applied Physics Letters</i> , 2009 , 95, 1133	o <i>ŝ</i> ∙4	30
243	Lithium salt doped conjugated polymers as electron transporting materials for highly efficient blue polymer light-emitting diodes. <i>Applied Physics Letters</i> , 2008 , 93, 243302	3.4	30
242	Time resolved photoluminescence spectroscopy of surface-plasmon-enhanced light emission from conjugate polymers. <i>Applied Physics Letters</i> , 2006 , 89, 221106	3.4	30
241	Perfluorocyclobutane-Based Polyester(arylene ether)s for Applications in Integrated Optics. <i>Macromolecules</i> , 2004 , 37, 5578-5585	5.5	30
240	The effect of ligand conjugation length on europium complex performance in light-emitting diodes. <i>Synthetic Metals</i> , 2001 , 125, 331-336	3.6	30
239	Dopant-Free Crossconjugated Hole-Transporting Polymers for Highly Efficient Perovskite Solar Cells. <i>Advanced Science</i> , 2020 , 7, 1903331	13.6	29
238	Highly Efficient Organic Electrooptic Materials and Their Hybrid Systems for Advanced Photonic Devices. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2013 , 19, 42-53	3.8	29
237	A Silicon-Polymer Hybrid Modulator Design, Simulation and Proof of Principle. <i>Journal of Lightwave Technology</i> , 2013 , 31, 4067-4072	4	29
236	Reducing cross-sensitivity of TiO2-(B) nanowires to humidity using ultraviolet illumination for trace explosive detection. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 5017-21	3.6	29
235	EPhosphonic acid organic monolayer morphous solgel hafnium oxide hybrid dielectric for low-voltage organic transistors on plastic. <i>Journal of Materials Chemistry</i> , 2009 , 19, 7929		29
234	Versatile Synthetic Approach to Nonlinear Optical Side-Chain Aromatic Polyquinolines with Large Second-Order Nonlinearity and Thermal Stability. <i>Macromolecules</i> , 1998 , 31, 4049-4052	5.5	29

233	Thermally stable nonlinear optical polyimides: synthesis and electro-optic properties. <i>Journal of the Chemical Society Chemical Communications</i> , 1994 , 965		29
232	Design and synthesis of thermally stable side-chain polyimides for second-order nonlinear optical applications. <i>Journal of the Chemical Society Chemical Communications</i> , 1994 , 2711		29
231	Phenyl- and Pyrazolyl-Functionalized Pyrimidine: Versatile Chromophore of Bis-Tridentate Ir(III) Phosphors for Organic Light-Emitting Diodes. <i>Chemistry of Materials</i> , 2019 , 31, 6453-6464	9.6	29
230	Doping Versatile n-Type Organic Semiconductors via Room Temperature Solution-Processable Anionic Dopants. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 1136-1144	9.5	28
229	Three-dimensional molecular donors combined with polymeric acceptors for high performance fullerene-free organic photovoltaic devices. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 22162-22169	13	28
228	Spin cast self-assembled monolayer field effect transistors. <i>Organic Electronics</i> , 2012 , 13, 464-468	3.5	28
227	Poling efficiency enhancement of tethered binary nonlinear optical chromophores for achieving an ultrahigh n3r33 figure-of-merit of 2601 pm Val. Journal of Materials Chemistry C, 2015, 3, 6737-6744	7.1	28
226	2,1,3-Benzothiadiazole (BTD)-moiety-containing red emitter conjugated amphiphilic poly(ethylene glycol)-block-poly(epsilon-caprolactone) copolymers for bioimaging. <i>Journal of Materials Chemistry</i> , 2010 , 20, 1728-1736		28
225	Nanostructured Functional Block Copolymers for Electrooptic Devices. <i>Macromolecules</i> , 2007 , 40, 97-104	5 .5	28
224	Two-dimensional self-assembly of 1-pyrylphosphonic acid: transfer of stacks on structured surface. Journal of the American Chemical Society, 2006 , 128, 5672-9	16.4	28
223	Achieving excellent tradeoffs among optical, chemical and thermal properties in second-order nonlinear optical chromophores. <i>Chemical Communications</i> , 1996 , 1237	5.8	28
222	Electro-optic (E-O) molecular glasses. <i>Chemistry - an Asian Journal</i> , 2009 , 4, 20-31	4.5	27
221	Effect of the phenyl ring orientation in the polystyrene buffer layer on the performance of pentacene thin-film transistors. <i>Organic Electronics</i> , 2010 , 11, 1066-1073	3.5	27
220	All-Dielectric Electrooptic Sensor Based on a Polymer Microresonator Coupled Side-Polished Optical Fiber. <i>IEEE Sensors Journal</i> , 2007 , 7, 515-524	4	27
219	Dispersion of the first molecular hyperpolarizability of charge-transfer chromophores studied by hyper-Rayleigh scattering. <i>Chemical Physics</i> , 2001 , 271, 137-143	2.3	27
218	Low-Bandgap Organic Bulk-Heterojunction Enabled Efficient and Flexible Perovskite Solar Cells. <i>Advanced Materials</i> , 2021 , 33, e2105539	24	27
217	Efficient poling of electro-optic polymers in thin films and silicon slot waveguides by detachable pyroelectric crystals. <i>Advanced Materials</i> , 2012 , 24, OP42-7	24	26
216	Optimization of Active Layer and Anode Electrode for High-Performance Inverted Bulk-Heterojunction Solar Cells. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2010 , 16, 1665-16	375	26

215	Using end groups to tune the linear and nonlinear optical properties of bis(dioxaborine)-terminated polymethine dyes. <i>ChemPhysChem</i> , 2010 , 11, 130-8	3.2	26
214	Biomimetic Electrodes for Flexible Organic Solar Cells with Efficiencies over 16%. <i>Advanced Optical Materials</i> , 2020 , 8, 2000669	8.1	25
213	Trihydrazine Dihydriodide-Assisted Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells. <i>Solar Rrl</i> , 2019 , 3, 1900285	7.1	25
212	Interface-tailored and nanoengineered polymeric materials for (opto)electronic devices. <i>Polymer International</i> , 2009 , 58, 594-619	3.3	25
211	Single-cell patterning and adhesion on chemically engineered poly(dimethylsiloxane) surface. <i>Langmuir</i> , 2009 , 25, 4615-20	4	25
210	Low-voltage high-performance C60 thin film transistors via low-surface-energy phosphonic acid monolayer/hafnium oxide hybrid dielectric. <i>Applied Physics Letters</i> , 2008 , 93, 083302	3.4	25
209	Peptide-mediated surface-immobilized quantum dot hybrid nanoassemblies with controlled photoluminescence. <i>Journal of Materials Chemistry</i> , 2007 , 17, 866-872		25
208	Efficient ultraviolet-blue polymer light-emitting diodes based on a fluorene-based non-conjugated polymer. <i>Applied Physics Letters</i> , 2006 , 89, 081104	3.4	25
207	Ordered self-assembly and electronic behavior of C60-anthrylphenylacetylene hybrid. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 1512-6	16.4	25
206	Bright and efficient exciplex emission from light-emitting diodes based on hole-transporting amine derivatives and electron-transporting polyfluorenes. <i>Journal of Applied Physics</i> , 2002 , 91, 10147	2.5	25
205	A Room-Temperature Processable PDI-Based Electron-Transporting Layer for Enhanced Performance in PDI-Based Non-Fullerene Solar Cells. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600476	4.6	25
204	Improved Ambient-Stable Perovskite Solar Cells Enabled by a Hybrid Polymeric Electron-Transporting Layer. <i>ChemSusChem</i> , 2016 , 9, 2586-2591	8.3	24
203	Realization of Highly Efficient Red Phosphorescence from Bis-Tridentate Iridium(III) Phosphors. <i>Inorganic Chemistry</i> , 2019 , 58, 10944-10954	5.1	24
202	Rational Design Using Deward Rules for Enhancing the First Hyperpolarizability of Nonlinear Optical Chromophores. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 22284-22288	3.8	24
201	Cooperative Near-Field Surface Plasmon Enhanced Quantum Dot Nanoarrays. <i>Advanced Functional Materials</i> , 2010 , 20, 2675-2682	15.6	24
200	Modifying Surface Termination of CsPbI3 Grain Boundaries by 2D Perovskite Layer for Efficient and Stable Photovoltaics. <i>Advanced Functional Materials</i> , 2021 , 31, 2009515	15.6	24
199	Mechanochromic fluorescence in epoxy as a detection method for barely visible impact damage in CFRP composites. <i>Composites Science and Technology</i> , 2017 , 139, 74-82	8.6	23
198	Random copolymerization realized high efficient polymer solar cells with a record fill factor near 80%. <i>Nano Energy</i> , 2019 , 61, 228-235	17.1	23

197	Tuning H- and J-Aggregate Behavior in Econjugated Polymers via Noncovalent Interactions. Journal of Physical Chemistry C, 2018 , 122, 18860-18869	3.8	23	
196	Crystalline co-assemblies of functional fullerenes in methanol with enhanced charge transport. <i>Journal of the American Chemical Society</i> , 2015 , 137, 2167-70	16.4	23	
195	Chemiresistive response of silicon nanowires to trace vapor of nitro explosives. <i>Nanoscale</i> , 2012 , 4, 262	28 7 372	23	
194	High-efficiency polymer light-emitting diodes using neutral surfactant modified aluminum cathode. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 6010-4	3.4	23	
193	Designs from single junctions, heterojunctions to multijunctions for high-performance perovskite solar cells. <i>Chemical Society Reviews</i> , 2021 , 50, 13090-13128	58.5	23	
192	New pushpull polyene chromophores containing a Michler's base donor and a tricyanofuran acceptor: multicomponent condensation, allopolar isomerism and large optical nonlinearity. Journal of Materials Chemistry C, 2017, 5, 2230-2234	7.1	22	
191	Modulation of hybrid organicperovskite photovoltaic performance by controlling the excited dynamics of fullerenes. <i>Materials Horizons</i> , 2015 , 2, 414-419	14.4	22	
190	Narrow Bandpass and Efficient Semitransparent Organic Solar Cells Based on Bioinspired Spectrally Selective Electrodes. <i>ACS Nano</i> , 2020 , 14, 5998-6006	16.7	22	
189	Interfacial Modification through a Multifunctional Molecule for Inorganic Perovskite Solar Cells with over 18% Efficiency. <i>Solar Rrl</i> , 2020 , 4, 2000205	7.1	22	
188	Solvent-dispersed benzothiadiazole-tetrathiafulvalene single-crystal nanowires and their application in field-effect transistors. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 2320-4	9.5	22	
187	Mach Zehnder interferometry method for decoupling electro-optic and piezoelectric effects in poled polymer films. <i>Applied Physics Letters</i> , 2010 , 97, 041109	3.4	22	
186	Low-voltage high-performance organic thin film transistors with a thermally annealed polystyrene/hafnium oxide dielectric. <i>Applied Physics Letters</i> , 2009 , 95, 243302	3.4	22	
185	Tracking bacterial infection of macrophages using a novel red-emission pH sensor. <i>Analytical and Bioanalytical Chemistry</i> , 2010 , 398, 1375-84	4.4	22	
184	Modeling Photobleaching of Optical Chromophores: Light-Intensity Effects in Precise Trimming of Integrated Polymer Devices <i>Journal of Physical Chemistry C</i> , 2008 , 112, 8051-8060	3.8	22	
183	Direct surface functionalization of indium tin oxide via electrochemically induced assembly. <i>Journal of Materials Chemistry</i> , 2007 , 17, 3489		22	
182	Efficient and stable blue light-emitting diodes based on an anthracene derivative doped poly(N-vinylcarbazole). <i>Applied Physics Letters</i> , 2004 , 85, 5433-5435	3.4	22	
181	Efficient emission from a europium complex containing dendron-substituted diketone ligands. <i>Thin Solid Films</i> , 2002 , 416, 212-217	2.2	22	
180	Highly efficient, thermally and chemically stable nonlinear optical chromophores based on the perfluoroaryldicyanovinyl electron acceptors. <i>Chemical Communications</i> , 1999 , 2391-2392	5.8	22	

179	Asymmetrical side-chain engineering of small-molecule acceptors enable high-performance nonfullerene organic solar cells. <i>Nano Energy</i> , 2020 , 67, 104209	17.1	22
178	Design, synthesis, and properties of nonlinear optical chromophores based on a verbenone bridge with a novel dendritic acceptor. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 2840-2847	7.1	21
177	Enhanced temporal stability of a highly efficient guestflost electro-optic polymer through a barrier layer assisted poling process. <i>Journal of Materials Chemistry</i> , 2012 , 22, 20353		21
176	Dipolar Chromophore Facilitated Huisgen Cross-Linking Reactions for Highly Efficient and Thermally Stable Electrooptic Polymers. <i>ACS Macro Letters</i> , 2012 , 1, 793-796	6.6	21
175	High-optical-quality blends of anionic polymethine salts and polycarbonate with enhanced third-order non-linearities for silicon-organic hybrid devices. <i>Advanced Materials</i> , 2012 , 24, OP326-30	24	21
174	Charge carrier dynamics in metalated polymers investigated by optical-pump terahertz-probe spectroscopy. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 15427-32	3.4	21
173	Effects of Counterions with Multiple Charges on the Linear and Nonlinear Optical Properties of Polymethine Salts. <i>Chemistry of Materials</i> , 2016 , 28, 3115-3121	9.6	21
172	Silica/Electro-Optic Polymer Optical Modulator With Integrated Antenna for Microwave Receiving. Journal of Lightwave Technology, 2014 , 32, 3861-3867	4	20
171	A Triptycene-Containing Chromophore for Improved Temporal Stability of Highly Efficient GuestHost Electrooptic Polymers. <i>Macromolecules</i> , 2011 , 44, 1261-1265	5.5	20
170	Modeling the optical behavior of complex organic media: from molecules to materials. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 15581-8	3.4	20
169	Low drive voltage Fabry-Pflot falon device tunable filters using poled hybrid sol-gel materials. <i>Applied Physics Letters</i> , 2006 , 89, 041127	3.4	20
168	Very large electro-optic coefficients from in situ generated side-chain nonlinear optical polymers. <i>Applied Physics Letters</i> , 2005 , 87, 071109	3.4	20
167	Roles of Ancillary Chelates and Overall Charges of Bis-tridentate Ir(III) Phosphors for OLED Applications. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 1084-1093	9.5	20
166	Facile Incorporation of Pd(PPh3)2Hal Substituents into Polymethines, Merocyanines, and Perylene Diimides as a Means of Suppressing Intermolecular Interactions. <i>Journal of the American Chemical Society</i> , 2016 , 138, 10112-5	16.4	20
165	Solution-processed chalcopyriteperovskite tandem solar cells in bandgap-matched two- and four-terminal architectures. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 3214-3220	13	19
164	Surface-normal plasmonic modulator using sub-wavelength metal grating on electro-optic polymer thin film. <i>Optics Communications</i> , 2015 , 352, 116-120	2	19
163	Measurements of the first hyperpolarizabilities of thiophene-based charge-transfer chromophores with hyper-Rayleigh scattering at 1064 and 1907 nm. <i>Chemical Physics</i> , 2000 , 262, 475-487	2.3	19
162	A new synthetic approach for the incorporation of highly efficient second-order nonlinear optical chromophores containing tricyanovinyl electron acceptors into methacrylate polymers. <i>Journal of the Chemical Society Chemical Communications</i> 1994 369		19

(2020-2015)

161	Side chain structure affects the molecular packing and photovoltaic performance of oligothiophene-based solution-processable small molecules. <i>RSC Advances</i> , 2015 , 5, 67718-67726	3.7	18	
160	Electric-field sensors utilizing coupling between a D-fiber and an electro-optic polymer slab. <i>Applied Optics</i> , 2011 , 50, 3505-12	0.2	18	
159	Bonding and Molecular Environment Effects on Near-Infrared Optical Absorption Behavior in Nonlinear Optical Monoazo Chromophore Polymer Materials. <i>Macromolecules</i> , 2006 , 39, 7566-7577	5.5	18	
158	Wavelength dependence of first molecular hyperpolarizability of a dendrimer in solution. <i>Journal of Chemical Physics</i> , 2004 , 121, 6086-92	3.9	18	
157	Rhodanine-methine as Electron acceptor in second-order nonlinear optical chromophores. <i>Tetrahedron Letters</i> , 1994 , 35, 3849-3852	2	18	
156	Enabling High Efficiency of Hydrocarbon-Solvent Processed Organic Solar Cells through Balanced Charge Generation and Non-Radiative Loss. <i>Advanced Energy Materials</i> , 2021 , 11, 2101768	21.8	18	
155	Tetrathienodibenzocarbazole Based Donor Acceptor Type Wide Band-Gap Copolymers for Polymer Solar Cell Applications. <i>Macromolecules</i> , 2014 , 47, 7407-7415	5.5	17	
154	Optical and electrical effects of plasmonic nanoparticles in high-efficiency hybrid solar cells. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 17105-11	3.6	17	
153	Tunable light-harvesting polymers containing embedded dipolar chromophores for polymer solar cell applications. <i>Journal of Polymer Science Part A</i> , 2012 , 50, 1362-1373	2.5	17	
152	Sulfonated Graphene Aerogels Enable Safe-to-Use Flexible Perovskite Solar Modules. <i>Advanced Energy Materials</i> , 2022 , 12, 2103236	21.8	17	
151	Performance limits of plasmon-enhanced organic photovoltaics. <i>Applied Physics Letters</i> , 2014 , 105, 0333	394	16	
150	Fully visible-light-harvesting conjugated polymers with pendant donor-Eacceptor chromophores for photovoltaic applications. <i>Solar Energy Materials and Solar Cells</i> , 2012 , 97, 50-58	6.4	16	
149	Bottom-contact small-molecule n-type organic field effect transistors achieved via simultaneous modification of electrode and dielectric surfaces. <i>Organic Electronics</i> , 2012 , 13, 3226-3233	3.5	16	
148	Experimental studies of the length dependence of second-order nonlinear optical responses of conjugated molecules. <i>Physical Review A</i> , 1994 , 49, 3077-3080	2.6	16	
147	Quasi-three-level model applied to measured spectra of nonlinear absorption and refraction in organic molecules. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2016 , 33, 780	1.7	16	
146	The molecular ordering and double channel carrier generation of non-fullerene photovoltaics within multi-length-scale morphology <i>Advanced Materials</i> , 2022 , e2108317	24	16	
145	Dilution effect for highly efficient multiple-component organic solar cells. <i>Nature Nanotechnology</i> , 2021 ,	28.7	16	
144	A silicon-organic hybrid platform for quantum microwave-to-optical transduction. <i>Quantum Science and Technology</i> , 2020 , 5, 034004	5.5	15	

143	Electrooptic Polymer Modulator With Single-Mode to Multimode Waveguide Transitions. <i>IEEE Photonics Technology Letters</i> , 2008 , 20, 1051-1053	2.2	15
142	Near-infrared absorbing polymer acceptors enabled by selenophene-fused core and halogenated end-group for binary all-polymer solar cells with efficiency over 16%. <i>Nano Energy</i> , 2022 , 92, 106718	17.1	15
141	An effective and economical encapsulation method for trapping lead leakage in rigid and flexible perovskite photovoltaics. <i>Nano Energy</i> , 2022 , 93, 106853	17.1	15
140	Selenium-Containing Organic Photovoltaic Materials. <i>Accounts of Chemical Research</i> , 2021 , 54, 3906-39	1 6 4.3	15
139	Asymmetric Isomer Effects in Benzo[c][1,2,5]thiadiazole-Fused Nonacyclic Acceptors: Dielectric Constant and Molecular Crystallinity Control for Significant Photovoltaic Performance Enhancement. <i>Advanced Functional Materials</i> , 2021 , 31, 2104369	15.6	15
138	A1-A2 Type Wide Bandgap Polymers for High-Performance Polymer Solar Cells: Energy Loss and Morphology. <i>Solar Rrl</i> , 2019 , 3, 1800291	7.1	15
137	Design of Superhydrophobic Surfaces for Stable Perovskite Solar Cells with Reducing Lead Leakage. <i>Advanced Energy Materials</i> , 2021 , 11, 2102281	21.8	15
136	A conductive liquid crystal via facile doping of an n-type benzodifurandione derivative. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 6929-6934	13	14
135	Manipulation of optical field distribution in ITO-free micro-cavity polymer tandem solar cells via the out-of-cell capping layer for high photovoltaic performance. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 961-968	13	14
134	Thiol-Linked Anthraquinone Anthryl Acetylene Molecule: Synthesis, Self-assembly, and Photoelectrochemical Properties. <i>Chemistry of Materials</i> , 2005 , 17, 2896-2903	9.6	14
133	Highly efficient and stable perovskite solar cells enabled by low-dimensional perovskitoids <i>Science Advances</i> , 2022 , 8, eabk2722	14.3	14
132	Zwitterionic Cyanine¶yanine Salt: Structure and Optical Properties. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 15378-15384	3.8	14
131	Blue-emitting bis-tridentate Ir(III) phosphors: OLED performances vs. substituent effects. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 10486-10496	7.1	14
130	The role of dipole moment in two fused-ring electron acceptor and one polymer donor based ternary organic solar cells. <i>Materials Chemistry Frontiers</i> , 2020 , 4, 1507-1518	7.8	13
129	Spontaneous thermal crosslinking of a sydnone-containing side-chain polymer with maleimides through a convergent [3 + 2] dual cycloaddition/cycloreversion process for electro-optics. <i>Polymer Chemistry</i> , 2013 , 4, 5760	4.9	13
128	Surface plasmon enhanced fluorescence of cationic conjugated polymer on periodic nanoarrays. <i>ACS Applied Materials & Discrete Section</i> 2, 3153-9	9.5	13
127	Hybrid Fabry-Pflot falon using an electro-optic polymer for optical modulation. <i>Applied Physics Letters</i> , 2006 , 89, 141113	3.4	13
126	Hyper-Rayleigh scattering and frequency dependence of the first molecular hyperpolarizability of a strong charge-transfer chromophore. <i>Journal of Chemical Physics</i> , 2003 , 119, 6237-6244	3.9	13

125	Improved stability and efficiency of perovskite/organic tandem solar cells with an all-inorganic perovskite layer. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 19778-19787	13	13
124	Synergistical Dipole-Dipole Interaction Induced Self-Assembly of Phenoxazine-Based Hole-Transporting Materials for Efficient and Stable Inverted Perovskite Solar Cells. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 20437-20442	16.4	13
123	Low operational voltage and high performance organic field effect memory transistor with solution processed graphene oxide charge storage media. <i>Organic Electronics</i> , 2014 , 15, 2775-2782	3.5	12
122	Highly sensitive thermal damage sensors for polymer composites: time temperature indicator based on thermochromic fluorescence turn-on response. <i>Smart Materials and Structures</i> , 2017 , 26, 0850	0394	12
121	Influence of self-assembled monolayer binding group on graphene transistors. <i>Applied Physics Letters</i> , 2015 , 106, 021603	3.4	12
120	UV-Sensitive Self-Assembled Monolayer Photoresist for the Selective Deposition of Carbon Nanotubes. <i>Chemistry of Materials</i> , 2012 , 24, 2017-2021	9.6	12
119	Solid-State Densification of Spun-Cast Self-Assembled Monolayers for Use in Ultra-Thin Hybrid Dielectrics. <i>Applied Surface Science</i> , 2012 , 261, 908-908	6.7	12
118	Electro-optic modulator with exceptional power-size performance enabled by transparent conducting electrodes. <i>Optics Express</i> , 2010 , 18, 6779-96	3.3	12
117	Utilization of micelles formed from poly(ethylene glycol)-block-poly(epsilon-caprolactone) block copolymers as nanocarriers to enable hydrophobic red two-photon absorbing emitters for cells imaging. <i>Journal of Biomedical Materials Research - Part A</i> , 2010 , 93, 1068-79	5.4	12
116	Molecular mobility in self-assembled dendritic chromophore glasses. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 14180-8	3.4	12
115	Controlled assembly of large pi-conjugated aromatic thiols on Au(111). Nanotechnology, 2008, 19, 1356	50 5 4	12
114	Low temperature relaxations and effects on poling efficiencies of dendronized nonlinear optical side-chain polymers. <i>Applied Physics Letters</i> , 2005 , 86, 211908	3.4	12
113	Poling Dynamics and Effects of Trapped Charge in Poled Polymer Films for Nonlinear Optical Applications. <i>Macromolecules</i> , 1996 , 29, 7064-7074	5.5	12
112	Bandwidth Optimization for MachZehnder Polymer/SolCel Modulators. <i>Journal of Lightwave Technology</i> , 2018 , 36, 4181-4189	4	12
111	16.3% Efficiency binary all-polymer solar cells enabled by a novel polymer acceptor with an asymmetrical selenophene-fused backbone. <i>Science China Chemistry</i> , 2022 , 65, 309-317	7.9	12
110	RF photonic downconversion of vector modulated signals based on a millimeter-wave coupled electrooptic nonlinear polymer phase-modulator. <i>Optics Express</i> , 2017 , 25, 29885-29895	3.3	11
109	Enhanced conductivity of sol-gel silica cladding for efficient poling in electro-optic polymer/TiO2 vertical slot waveguide modulators. <i>Optics Express</i> , 2014 , 22, 30191-9	3.3	11
108	Electro-optic properties of hybrid solgel doped with a nonlinear chromophore with large hyperpolarizability. <i>Optics Letters</i> , 2005 , 30, 117-9	3	11

107	Arrays of covalently bonded single gold nanoparticles on thiolated molecular assemblies. <i>Langmuir</i> , 2006 , 22, 6346-51	4	11
106	Achieving Fully Blade-Coated Ambient-Processed Perovskite Solar Cells by Controlling the Blade-Coater Temperature. <i>IEEE Journal of Photovoltaics</i> , 2018 , 8, 1662-1669	3.7	10
105	Photo-induced denitrogenation of triazoline moieties for efficient photo-assisted poling of electro-optic polymers. <i>Polymer Chemistry</i> , 2013 , 4, 4434	4.9	10
104	Solvent-vapor annealing-induced growth, alignment, and patterning of Econjugated supramolecular nanowires. <i>Journal of Materials Research</i> , 2011 , 26, 311-321	2.5	10
103	Photo-Stability Measurement of Electro-Optic Polymer Waveguides With High Intensity at 1550-nm Wavelength. <i>Journal of Lightwave Technology</i> , 2009 , 27, 1045-1050	4	10
102	Interfacial Engineering of Wide-Bandgap Perovskites for Efficient Perovskite/CZTSSe Tandem Solar Cells. <i>Advanced Functional Materials</i> ,2107359	15.6	10
101	Development and Challenges of Metal Halide Perovskite Solar Modules. Solar Rrl,2100545	7.1	10
100	Self-assembled Monolayer Enabling Improved Buried Interfaces in Blade-coated Perovskite Solar Cells for High Efficiency and Stability 2022 , 4		10
99	Enhanced crystallization and performance of formamidinium lead triiodide perovskite solar cells through PbI2-SrCl2 modulation. <i>Materials Today Energy</i> , 2018 , 7, 239-245	7	9
98	Enhanced crystalline morphology of a ladder-type polymer bulk-heterojunction device by blade-coating. <i>Nanoscale</i> , 2015 , 7, 10936-9	7.7	9
97	Mesoporous sol-gel silica cladding for hybrid TiO2/electro-optic polymer waveguide modulators. <i>Optics Express</i> , 2014 , 22, 16418-23	3.3	9
96	Morphology evolution by controlling solvent-solute interactions using a binary solvent in bulk heterojunction solar cells. <i>Applied Physics Letters</i> , 2013 , 102, 233903	3.4	9
95	Microring Resonators Made in Poled and Unpoled Chromophore-Containing Polymers for Optical Communication and Sensors. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2008 , 14, 1281-1288	3 ^{3.8}	9
94	Experimental Demonstration of a Linearized Polymeric Directional Coupler Modulator. <i>IEEE Photonics Technology Letters</i> , 2007 , 19, 1762-1764	2.2	9
93	Efficient photocurrent generation through a self-assembled monolayer of C60-mercaptophenylanthrylacetylene. <i>Journal of Power Sources</i> , 2006 , 160, 711-715	8.9	9
92	Methoxy-substituted bis-tridentate iridium(III) phosphors and fabrication of blue organic light emitting diodes. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 13590-13602	7.1	9
91	Formation of Vitrified Solid Solution Enables Simultaneously Efficient and Stable Organic Solar Cells. <i>ACS Energy Letters</i> ,3522-3529	20.1	9
90	Photoinduced Charge Transfer in Single-Molecule p-n Junctions. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 2175-2181	6.4	8

89	Significance of ions with an ordered arrangement for enhancing the electron injection/extraction in polymer optoelectronic devices. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 4805-4811	7.1	8
88	Cascading Retro-Diels-Alder Cycloreversion and Sydnone-Maleimide Based Double 1,3-Dipolar Cycloaddition for Quantitative Thermal Cross-Linking of an Amorphous Polymer Solid <i>ACS Macro Letters</i> , 2013 , 2, 256-259	6.6	8
87	Order of Magnitude Effects of Thiazole Regioisomerism on the Near-IR Two-Photon Cross-Sections of Dipolar Chromophores. <i>Advanced Functional Materials</i> , 2008 , 18, 794-801	15.6	8
86	Controlled assembly of large Etonjugated n-type molecules on Au(111). Nanotechnology, 2007 , 18, 3353	30,24	8
85	Homogeneous Grain Boundary Passivation in Wide-Bandgap Perovskite Films Enables Fabrication of Monolithic Perovskite/Organic Tandem Solar Cells with over 21% Efficiency. <i>Advanced Functional Materials</i> ,2112126	15.6	8
84	Regulating the Aggregation of Unfused Non-Fullerene Acceptors via Molecular Engineering towards Efficient Polymer Solar Cells. <i>ChemSusChem</i> , 2021 , 14, 3579-3589	8.3	8
83	Efficient Inverted Perovskite Solar Cells with Low Voltage Loss Achieved by a Pyridine-Based Dopant-Free Polymer Semiconductor. <i>Angewandte Chemie</i> , 2021 , 133, 7303-7309	3.6	8
82	Highly efficient and stable perovskite solar cells enabled by a fluoro-functionalized TiO2 inorganic interlayer. <i>Matter</i> , 2021 ,	12.7	8
81	Photovoltaic performance of ladder-type indacenodithieno[3,2-b]thiophene-based polymers with alkoxyphenyl side chains. <i>RSC Advances</i> , 2015 , 5, 26680-26685	3.7	7
80	Efficient wafer-scale poling of electro-optic polymer thin films on soda-lime glass substrates: large second-order nonlinear coefficients and exceptional homogeneity of optical birefringence. <i>Optical Materials Express</i> , 2017 , 7, 1909	2.6	7
79	Enhancing the hole injection ability of indium tin oxide via ammonium salts in polymer light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 531-535	7.1	7
78	Organic Electro-Optic Materials. ACS Symposium Series, 2010, 13-33	0.4	7
77	Simplified Reflection Fabry-Perot Method for Determination of Electro-Optic Coefficients of Poled Polymer Thin Films. <i>Polymers</i> , 2011 , 3, 1310-1324	4.5	7
76	Nanostructured functional dendrimers and polymers for photonics. <i>Comptes Rendus Chimie</i> , 2003 , 6, 895-902	2.7	7
75	Novel fluorine-containing second-order NLO polymers with high glass transition temperature. <i>Optical Materials</i> , 2003 , 21, 61-65	3.3	7
74	Heteroaromatics: Exceptional Materials for Second Order Nonlinear Optical Applications. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 247, 59		7
73	Mechanochemical changes in absorption and fluorescence of DDM-containing epoxies. <i>Polymer</i> , 2018 , 142, 132-143	3.9	6
72	Role of self-assembled tetraoctylammonium bromide on various conjugated polymers in polymer light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 272-276	7.1	6

71	Enhanced Performance of Self-Assembled Monolayer Field-Effect Transistors with Top-Contact Geometry through Molecular Tailoring, Heated Assembly, and Thermal Annealing. <i>Advanced Functional Materials</i> , 2015 , 25, 5376-5383	ý	6
70	Synthesis and characterization of processible electroluminescent poly[(2,7-diethynyl-9,9-di-2-ethylhexylfluorene)- alt - co -(2,5-thienylene)]. <i>Synthetic Metals</i> , 2001 , 3.6 124, 323-327		6
69	Thermally Stable Poled Polymers: Highly Efficient Heteroaromatic Chromophores in High Temperature Polyimides. <i>Materials Research Society Symposia Proceedings</i> , 1993 , 328, 413		6
68	Highly Active and Thermally Stable Ctlromophores and Polymers for Electro-Optic Applications. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 392, 33		6
67	The evolution and future of metal halide perovskite-based optoelectronic devices. <i>Matter</i> , 2021 , 4, 3814 <u>138</u> ,	34	6
66	Tailoring Phase Purity in the 2D/3D Perovskite Heterostructures Using Lattice Mismatch. <i>ACS</i> Energy Letters, 550-559	Ĺ	6
65	Over 16% Efficiency of Thick-Film Organic Photovoltaics with Symmetric and Asymmetric Non-Fullerene Materials as Alloyed Acceptor. <i>Solar Rrl</i> , 2021 , 5, 2100365		6
64	Spontaneously poling of electro-optic polymer thin films across a 1.1-mm thick glass substrate by pyroelectric crystals. <i>Applied Physics Letters</i> , 2014 , 105, 183305		5
63	The effect of dipole moment and electron deficiency of analytes on the chemiresistive response of TiO2(B) nanowires. <i>Analyst, The</i> , 2011 , 136, 4179-82		5
62	Efficient green polymer light-emitting diodes with microcavity effect in electroluminescence spectrum but constant quantum efficiency. <i>Journal of Applied Physics</i> , 2004 , 96, 3553-3555		5
61	Regiospecific -alkyl substitution tunes the molecular packing of high-performance non-fullerene acceptors. <i>Materials Horizons</i> , 2021 ,	ŀ	5
60	Non-Fullerene Acceptor Doped Block Copolymer for Efficient and Stable Organic Solar Cells. <i>ACS</i> Energy Letters, 2196-2202	Ĺ	5
59	Efficient and stable Cs2AgBiBr6 double perovskite solar cells through in-situ surface modulation. Chemical Engineering Journal, 2022, 446, 137144	7	5
58	Mechanism that governs the electro-optic response of second-order nonlinear polymers on silicon substrates. <i>Optical Materials Express</i> , 2015 , 5, 1653		4
57	Photochemical changes in absorption and fluorescence of DDM-containing epoxies. <i>Polymer</i> , 2018 , 142, 11-22		4
56	Thermochromic Polymer Film Sensors for Detection of Incipient Thermal Damage in Carbon Fiber?Epoxy Composites. <i>Sensors</i> , 2018 , 18,		4
55	Perovskites: Navigating Organo-Lead Halide Perovskite Phase Space via Nucleation Kinetics toward a Deeper Understanding of Perovskite Phase Transformations and Structure Property Relationships (Small 26/2015). Small, 2015, 11, 3087-3087		4
54	Enhanced third harmonic generation by organic materials on high-Q plasmonic photonic crystals. Optics Express, 2014, 22, 20292-7 3-3		4

53	Hybrid silicon-electro-optic-polymer integrated high-performance optical modulator 2014,		4
52	Second-Order Nonlinear Optical Properties Of Thiophene Containing Chromophores with Extended Conjugation. <i>Materials Research Society Symposia Proceedings</i> , 1993 , 328, 485		4
51	Multifunctional Molecular Design of a New Fulleropyrrolidine Electron Transport Material Family Engenders High Performance of Perovskite Solar Cells. <i>Advanced Functional Materials</i> ,2107695	15.6	4
50	Selenium: A Unique Member in the Chalcogen Family for Conjugated Materials Employed in Perovskite and Organic Solar Cells. <i>Solar Rrl</i> ,	7.1	4
49	Cationic Polyelectrolyte for Anionic Cyanines: An Efficient Way To Translate Molecular Properties into Material Properties. <i>Journal of the American Chemical Society</i> , 2019 , 141, 17331-17336	16.4	3
48	Synthesis of a side-chain hole transporting polymer through Mitsunobu post-functionalization for efficient inverted perovskite solar cells. <i>Polymer Chemistry</i> , 2020 , 11, 2883-2888	4.9	3
47	Modification of a Teng-Man technique to measure both r33 and r13 electro-optic coefficients. <i>Applied Physics Letters</i> , 2014 , 105, 113302	3.4	3
46	Broadband Low-power Optical Modulator Based on Electro-optic Polymer Infiltrated Silicon Slot Photonic Crystal Waveguide 2014 ,		3
45	High speed electro-optic polymer phase modulator using an in-plane slotline RF waveguide 2011,		3
44	Third-order nonlinearity contribution to electro-optic activity in polymer materials in a constant bias field. <i>Applied Physics Letters</i> , 2006 , 88, 041115	3.4	3
43	Nonlinear refraction and absorption measurements of thin films by the dual-arm Z-scan method. <i>Applied Optics</i> , 2019 , 58, D28-D33	1.7	3
42	Demonstration of Effective In-device r33 over 1000 pm/V in Electro-optic Polymer Refilled Silicon Slot Photonic Crystal Waveguide Modulator 2013 ,		3
41	Electric Field Detection Using an Electro-optic Polymer Refilled Silicon Slot Photonic Crystal Waveguide 2014 ,		3
40	High-Efficiency Quasi-2D Perovskite Solar Cells Incorporating 2,2?-Biimidazolium Cation. <i>Solar Rrl</i> , 2021 , 5, 2000700	7.1	3
39	Possible interfacial ion/charge accumulation in thin-film perovskite/fullerene surfactant planar heterojunction solar cells. <i>Journal Physics D: Applied Physics</i> , 2018 , 51, 504001	3	3
38	Configurable silicon photonic crystal waveguides. <i>Applied Physics Letters</i> , 2013 , 103, 261112	3.4	2
37	Molecular Design and Supramolecular Organization of Highly Efficient Nonlinear Optical Chromophores for Exceptional Electro-Optic Properties. <i>ACS Symposium Series</i> , 2010 , 51-66	0.4	2
36	Optimization of organic NLO materials for integration with silicon photonic, plasmonic (metal optics), and metamaterial devices 2011 ,		2

35	Stability and flexibility of self-assembled monolayers of thiols consisting of a horizontal large Esystem and a vertical spacer. <i>Journal of Physics Condensed Matter</i> , 2008 , 20, 315012	1.8	2
34	Low-voltage electro-optic polymer modulators 2006 ,		2
33	Novel Divalent Osmium Complexes: Synthesis, Characterization, Tuning of Emission, and use in Organic Light Emitting Diodes. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 771, 10341		2
32	Ordered Self-Assembly and Electronic Behavior of C60Anthrylphenylacetylene Hybrid. <i>Angewandte Chemie</i> , 2004 , 116, 1538-1542	3.6	2
31	New Developments in Thermally and Chemically Stable Nonlinear Optical Chromophores for E-O Device Applications. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 413, 185		2
30	Towards a low-loss, ultra-low drive voltage silicon-polymer hybrid electro-optic modulator 2011 ,		1
29	Hybrid silicon-organic racetrack resonator designs for electro-optical modulation 2010,		1
28	Recent Progress of Electro-optic Polymers for Device Applications. <i>Materials Research Society Symposia Proceedings</i> , 1997 , 488, 193		1
27	Charge transfer interactions in polymers and the fabrication of high frequency electro-optic modulators. <i>Macromolecular Symposia</i> , 1997 , 116, 135-142	0.8	1
26	Micro Resonators on Side-Polished Fiber - A Potential Fiber Optic Sensor Platform		1
25	High Performance Side-Chain Polyquinolines and Perfluorocyclobutane-Containing Thermoset Polymers for Electro-Optic Applications. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 598, 399		1
24	Near-Infrared Absorbing Nonfullerene Acceptors for Organic Solar Cells. <i>Solar Rrl</i> ,2100868	7.1	1
23	Ultra-Broadband Mach-Zehnder Hybrid Electro-Optic Polymer/Sol-Gel Silica Waveguide Modulators 2017 ,		1
22	Wideband Electromagnetic Wave Sensing Using Electro-optic Polymer Infiltrated Silicon Slot Photonic Crystal Waveguide 2014 ,		1
21	Towards a fully packaged high-performance RF sensor featuring slotted photonic crystal waveguides 2016 ,		1
20	Synergistical DipoleDipole Interaction Induced Self-Assembly of Phenoxazine-Based Hole-Transporting Materials for Efficient and Stable Inverted Perovskite Solar Cells. <i>Angewandte Chemie</i> , 2021 , 133, 20600-20605	3.6	1
19	Plasmonic Local Heating Induced Strain Modulation for Enhanced Efficiency and Stability of Perovskite Solar Cells. <i>Advanced Energy Materials</i> ,2200186	21.8	1
18	Side-Chain Substituents on Benzotriazole-Based Polymer Acceptors Affecting the Performance of All-Polymer Solar Cells <i>Macromolecular Rapid Communications</i> , 2022 , e2200062	4.8	1

17	Metal Oxide Interlayers for Polymer Solar Cells 2014 , 319-342		Ο
16	Enabling high-performance, centimeter-scale organic solar cells through three-dimensional charge transport. <i>Cell Reports Physical Science</i> , 2022 , 100761	6.1	О
15	The synergistic effects of central core size and end group engineering on performance of narrow bandgap nonfullerene acceptors. <i>Chemical Engineering Journal</i> , 2022 , 435, 135020	14.7	О
14	Multi-Selenophene-Containing Narrow Bandgap Polymer Acceptors for All-Polymer Solar Cells with over 15 % Efficiency and High Reproducibility. <i>Angewandte Chemie</i> , 2021 , 133, 16071-16079	3.6	0
13	Interface Engineering in Solution-Processed Thin-Film Solar Cells. <i>Accounts of Materials Research</i> , 2022 , 3, 272-282	7.5	О
12	Increased electro-optic effect in a guestflost electro-optic polymer by adding PEDOT:PSS as an interfacial barrier layer. <i>Journal of Optics (United Kingdom)</i> , 2017 , 19, 045503	1.7	
11	Corrections to A Silicon-Polymer Hybrid Modulator Design, Simulation, and Proof of Principle [Dec 13 4067-4072]. <i>Journal of Lightwave Technology</i> , 2015 , 33, 3358-3358	4	
10	Feature issue introduction: organic and polymeric materials for photonic applications. <i>Optical Materials Express</i> , 2017 , 7, 2691	2.6	
9	P-187: Crosslinkable Hole-Transporting Polymers for High Efficiency Blue and White Phosphorescent Light-Emitting Diodes. <i>Digest of Technical Papers SID International Symposium</i> , 2006 , 37, 931	0.5	
8	Absorption and Luminescence Properties of Sequentially Random- and Defined Copolymers Based on Poly(fluorene-benzothiadiazole). <i>Materials Research Society Symposia Proceedings</i> , 2003 , 771, 10311		
7	Focused Microwave-assisted Synthesis of 2,5-Dihydrofuran Derivatives as Electron Acceptors for Highly Efficient Nonlinear Optical Chromophores. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 771, 10481		
6	Platinum-Functionalized Chiral Molecular Squares as Light-Emitting Materials. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 846, DD3.6.1		
5	Synthesis and Characterization of Novel Conjugated Light-Emitting Polymers. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 725, 1		
4	Polyquinolines: Multifunctional Polymers for Electro-Optic and Light-Emitting Applications. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 558, 469		
3	Design and Synthesis of Highly Efficient Nonlinear Optical Chromophores. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 598, 60		
2	Poly(Binaphthalenevinylene-alt-Phenylenevinylene) Derivatives: Novel Luminescent Polymers for Light-Emitting Devices. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 598, 125		
1	A radically different path to high-performance Sn perovskite solar cells. Science China Chemistry,1	7.9	