Julie L Booth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11520327/publications.pdf

Version: 2024-02-01

567281 526287 2,840 31 15 27 citations h-index g-index papers 32 32 32 1338 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Development of Numerical Estimation in Young Children. Child Development, 2004, 75, 428-444.	3.0	797
2	Developmental and individual differences in pure numerical estimation. Developmental Psychology, 2006, 42, 189-201.	1.6	551
3	Numerical Magnitude Representations Influence Arithmetic Learning. Child Development, 2008, 79, 1016-1031.	3.0	500
4	Fractions: Could they really be the gatekeeper's doorman?. Contemporary Educational Psychology, 2012, 37, 247-253.	2.9	199
5	Instructional Complexity and the Science to Constrain It. Science, 2013, 342, 935-937.	12.6	136
6	Using example problems to improve student learning in algebra: Differentiating between correct and incorrect examples. Learning and Instruction, 2013, 25, 24-34.	3.2	133
7	The impact of fraction magnitude knowledge on algebra performance and learning. Journal of Experimental Child Psychology, 2014, 118, 110-118.	1.4	109
8	Persistent and Pernicious Errors in Algebraic Problem Solving. Journal of Problem Solving, 2014, 7, .	0.7	49
9	Design-Based Research Within the Constraints of Practice: AlgebraByExample. Journal of Education for Students Placed at Risk, 2015, 20, 79-100.	2.5	41
10	Are diagrams always helpful tools? Developmental and individual differences in the effect of presentation format on student problem solving. British Journal of Educational Psychology, 2012, 82, 492-511.	2.9	31
11	Learning Algebra by Example in Real-World Classrooms. Journal of Research on Educational Effectiveness, 2015, 8, 530-551.	1.6	31
12	The role of problem representation and feature knowledge in algebraic equation-solving. Journal of Mathematical Behavior, 2013, 32, 415-423.	0.9	30
13	Support for struggling students in algebra: Contributions of incorrect worked examples. Learning and Individual Differences, 2016, 48, 36-44.	2.7	29
14	Mathematical Flexibility: Aspects of a Continuum and the Role of Prior Knowledge. Journal of Experimental Education, 2020, 88, 503-515.	2.6	26
15	Mistakes on display: Incorrect examples refine equation solving and algebraic feature knowledge. Applied Cognitive Psychology, 2020, 34, 862-878.	1.6	22
16	Evidence for Cognitive Science Principles that Impact Learning in Mathematics., 2017,, 297-325.		21
17	Simple Practice Doesn't Always Make Perfect. Policy Insights From the Behavioral and Brain Sciences, 2015, 2, 24-32.	2.4	17
18	Algebra performance and motivation differences for students with learning disabilities and students of varying achievement levels. Contemporary Educational Psychology, 2017, 50, 80-96.	2.9	13

#	Article	IF	Citations
19	Relation of Spatial Skills to Calculus Proficiency: A Brief Report. Mathematical Thinking and Learning, 2017, 19, 55-68.	1.2	13
20	Lessening the Load of Misconceptions: Design-Based Principles for Algebra Learning. Journal of the Learning Sciences, 2019, 28, 381-417.	2.9	13
21	Student Magnitude Knowledge of Negative Numbers. Journal of Numerical Cognition, 2015, 1, 38-55.	1.2	13
22	How many apples make a quarter? The challenge of discrete proportional formats. Journal of Experimental Child Psychology, 2020, 192, 104774.	1.4	11
23	Misconceptions and Learning Algebra. , 2017, , 63-78.		9
24	Predicting Middle School Profiles of Algebra Performance Using Fraction Knowledge. Child Development, 2021, 92, 1984-2005.	3.0	9
25	Could probability be out of proportion? Self-explanation and example-based practice help students with lower proportional reasoning skills learn probability. Instructional Science, 2021, 49, 441-473.	2.0	8
26	Spatial Skills, Reasoning, and Mathematics. , 2019, , 100-123.		7
27	The effect of worked examples on student learning and error anticipation in algebra. Instructional Science, 2021, 49, 419-439.	2.0	7
28	Sketching and verbal selfâ€explanation: Do they help middle school children solve science problems?. Applied Cognitive Psychology, 2022, 36, 919-935.	1.6	7
29	A Worked Example for Creating Worked Examples. Mathematics Teaching in the Middle School, 2015, 21, 26-33.	0.1	6
30	Coordinating multiple representations of polynomials: What do patterns in students' solution strategies reveal?. Learning and Instruction, 2017, 49, 131-141.	3.2	1
31	Cognitive Development: Mathematics Learning and Instruction. , 2015, , 66-75.		O