
Manuel Torres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1152022/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alkali-activated and hybrid materials: Alternative to Portland cement as a storage media for solar thermal energy. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2023, 62, 160-173.	0.9	5
2	Chloride-induced corrosion of steel reinforcement in mortars manufactured with alternative environmentally-friendly binders. Cement and Concrete Composites, 2022, 130, 104557.	4.6	11
3	Improvement of thermal efficiency in cement mortars by using synthetic feldspars. Construction and Building Materials, 2021, 269, 121279.	3.2	8
4	Towards more sustainable building based on modified Portland cements through partial substitution by engineered feldspars. Construction and Building Materials, 2021, 269, 121334.	3.2	13
5	Effect of BaCO3 reactivity and mixing procedure on sulfate-resistant cement performance. Cement and Concrete Composites, 2021, 120, 104038.	4.6	3
6	Hindering the decrease in wear resistance of UV-exposed epoxy powder coatings by adding nano-SiO2 through ball milling. Wear, 2021, 480-481, 203935.	1.5	4
7	Carbon footprint and water use of alkali-activated and hybrid cement mortars. Journal of Cleaner Production, 2021, 319, 128653.	4.6	37
8	Hybrid cements: Towards their use as alternative and durable materials against wear. Construction and Building Materials, 2021, 312, 125397.	3.2	6
9	Eco-Efficient Hybrid Cements: Pozzolanic, Mechanical and Abrasion Properties. Applied Sciences (Switzerland), 2020, 10, 8986.	1.3	15
10	Wear behavior in pastes of alkali-activated materials: Influence of precursor and alkali solution. Tribology International, 2020, 147, 106293.	3.0	13
11	Influence of the Alkaline Reserve of Chloride-Contaminated Mortars on the 6-Year Corrosion Behavior of Corrugated UNS S32304 and S32001 Stainless Steels. Metals, 2019, 9, 686.	1.0	7
12	Critical aspects in the handling of reactive silica in cementitious materials: Effectiveness of rice husk ash vs nano-silica in mortar dosage. Construction and Building Materials, 2019, 223, 360-367.	3.2	33
13	RILEM TC 247-DTA round robin test: mix design and reproducibility of compressive strength of alkali-activated concretes. Materials and Structures/Materiaux Et Constructions, 2019, 52, 1.	1.3	53
14	In situ characterization of main reaction products in alkali-activated slag materials by Confocal Raman Microscopy. Cement and Concrete Composites, 2019, 99, 32-39.	4.6	39
15	In situ full view of the Portland cement hydration by confocal Raman microscopy. Journal of Raman Spectroscopy, 2019, 50, 720-730.	1.2	28
16	Alkali-activated slag concrete: Fresh and hardened behaviour. Cement and Concrete Composites, 2018, 85, 22-31.	4.6	151
17	Viability Study of a Safe Method for Health to Prepare Cement Pastes with Simultaneous Nanometric Functional Additions. Advances in Materials Science and Engineering, 2018, 2018, 1-13.	1.0	2
18	Waste glass as a precursor in alkaline activation: Chemical process and hydration products. Construction and Building Materials, 2017, 139, 342-354.	3.2	79

MANUEL TORRES

#	Article	IF	CITATIONS
19	New insights in weathering analysis of anhydrous cements by using high spectral and spatial resolution Confocal Raman Microscopy. Cement and Concrete Research, 2017, 100, 119-128.	4.6	39
20	La activación alcalina de diferentes aluminosilicatos como una alternativa al Cemento Portland: cementos activados alcalinamente o geopolÃmeros. Revista Ingenieria De Construccion, 2017, 32, 05-12.	0.4	59
21	Confocal Raman Microscopy: new perspective on the weathering of anhydrous cement. IOP Conference Series: Materials Science and Engineering, 2017, 251, 012035.	0.3	1
22	Reuse of urban and industrial waste glass as a novel activator for alkali-activated slag cement pastes: a case study. , 2015, , 75-109.		6
23	Alkali activated slag cements using waste glass as alternative activators. Rheological behaviour. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2015, 54, 45-57.	0.9	71
24	Radiological characterization of anhydrous/hydrated cements and geopolymers. Construction and Building Materials, 2015, 101, 1105-1112.	3.2	25
25	Waste glass in the geopolymer preparation. Mechanical and microstructural characterisation. Journal of Cleaner Production, 2015, 90, 397-408.	4.6	252
26	Durability of Alkali-Activated Slag Concretes Prepared Using Waste Glass as Alternative Activator. ACI Materials Journal, 2015, 112, .	0.3	12
27	Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterisation. Cement and Concrete Research, 2014, 57, 95-104.	4.6	300
28	Sodium silicate solutions from dissolution of glasswastes. Statistical analysis. Materiales De Construccion, 2014, 64, e014.	0.2	68
29	Peruvian volcanic ashes as new alternative material in geopolymer preparation: influence of dissolution concentration and wear resistance. , 0, , .		1