Shami Nejadi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11519929/publications.pdf

Version: 2024-02-01

471509 454955 1,026 32 17 30 citations h-index g-index papers 32 32 32 769 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effects of Different Orientation Angle, Size, Surface Roughness, and Heat Curing on Mechanical Behavior of 3D Printed Cement Mortar With/Without Glass Fiber in Powder-Based 3DP. 3D Printing and Additive Manufacturing, 2023, 10, 330-355.	2.9	9
2	Experimental investigation on flexural behaviour of composite PVC encased macro-synthetic fibre reinforced concrete walls. Construction and Building Materials, 2021, 273, 121756.	7.2	6
3	Experimental investigation on <scp>inâ€plane</scp> lateral stiffness and degree of ductility of composite <scp>PVC</scp> reinforced concrete walls. Structural Concrete, 2021, 22, 2126-2137.	3.1	1
4	Experimental investigation on interface shear strength of composite PVC encased macro-synthetic fibre reinforced concrete walls. Structures, 2021, 34, 729-737.	3.6	6
5	Dimensional accuracy, flowability, wettability, and porosity in inkjet 3DP for gypsum and cement mortar materials. Automation in Construction, 2020, 110, 102964.	9.8	54
6	Investigation into the effect of delays between printed layers on the mechanical strength of inkjet 3DP mortar. Manufacturing Letters, 2020, 23, 19-22.	2.2	12
7	Effects of deposition velocity in the presence/absence of E6-glass fibre on extrusion-based 3D printed mortar. Additive Manufacturing, 2020, 32, 101069.	3.0	24
8	Effect of Heat Curing and E6-Glass Fibre Reinforcement Addition on Powder-Based 3DP Cement Mortar. RILEM Bookseries, 2020, , 508-515.	0.4	3
9	Empirical models and design codes in prediction of modulus of elasticity of concrete. Frontiers of Structural and Civil Engineering, 2019, 13, 38-48.	2.9	13
10	Experimental analysis of fiberâ€reinforced recycled aggregate selfâ€compacting concrete using waste recycled concrete aggregates, polypropylene, and steel fibers. Structural Concrete, 2019, 20, 1670-1683.	3.1	54
11	A Study into the Effect of Different Nozzles Shapes and Fibre-Reinforcement in 3D Printed Mortar. Materials, 2019, 12, 1708.	2.9	69
12	Review of Emerging Additive Manufacturing Technologies in 3D Printing of Cementitious Materials in the Construction Industry. Frontiers in Built Environment, 2019, 4, .	2.3	82
13	Mechanical Properties of Cement-Based Materials and Effect of Elevated Temperature on 3-D Printed Mortar Specimens in Inkjet 3-D Printing. ACI Materials Journal, 2019, 116, .	0.2	8
14	Review on the mixture design and mechanical properties of the lightweight concrete containing expanded polystyrene beads. Australian Journal of Structural Engineering, 2018, 19, 1-23.	1.1	23
15	Analytical review of the mix design of fiber reinforced high strength self-compacting concrete. Journal of Building Engineering, 2018, 20, 264-276.	3.4	23
16	Sensitivity of concrete properties to compressive strength. Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics, 2018, 171, 29-44.	0.4	1
17	Modified 3D printed powder to cement-based material and mechanical properties of cement scaffold used in 3D printing. Construction and Building Materials, 2017, 138, 398-409.	7.2	146
18	Instantaneous deflection of light-weight concrete slabs. Frontiers of Structural and Civil Engineering, 2017, 11, 412-423.	2.9	4

#	Article	IF	CITATIONS
19	Optimisation of Different Concrete Mix Designs for 3D Printing by Utilizing 6DOF Industrial Robot. , 2017, , .		9
20	Mix design of light-weight self-compacting concrete. Case Studies in Construction Materials, 2016, 4, 1-14.	1.7	43
21	Instantaneous and time-dependent flexural cracking models of reinforced self-compacting concrete slabs with and without fibres. Computers and Concrete, 2015, 16, 223-243.	0.7	2
22	Short term bond shear stress and cracking control of reinforced self-compacting concrete one way slabs under flexural loading. Computers and Concrete, 2014, 13, 709-737.	0.7	15
23	Long-term flexural cracking control of reinforced self-compacting concrete one way slabs with and without fibres. Computers and Concrete, 2014, 14, 419-444.	0.7	18
24	Self-compacting concrete incorporating steel and polypropylene fibers: Compressive and tensile strengths, moduli of elasticity and rupture, compressive stress–strain curve, and energy dissipated under compression. Composites Part B: Engineering, 2013, 53, 121-133.	12.0	120
25	Mechanical characteristics of self-compacting concrete with and without fibres. Magazine of Concrete Research, 2013, 65, 608-622.	2.0	21
26	Creep and Shrinkage of Self-Compacting Concrete with and without Fibers. Journal of Advanced Concrete Technology, 2013, 11, 251-265.	1.8	42
27	Bond Behavior of Reinforcement in Conventional and Self-Compacting Concrete. Advances in Structural Engineering, 2012, 15, 2033-2051.	2.4	57
28	Bond characteristics of steel fibre reinforced self-compacting concrete. Canadian Journal of Civil Engineering, 2012, 39, 834-848.	1.3	34
29	Mechanical properties of conventional and self-compacting concrete: An analytical study. Construction and Building Materials, 2012, 36, 330-347.	7.2	89
30	Shrinkage behavior of self-compacting concrete. Journal of Zhejiang University: Science A, 2012, 13, 407-419.	2.4	27
31	Bond characteristics of steel fiber and deformed reinforcing steel bar embedded in steel fiber reinforced self-compacting concrete (SFRSCC). Open Engineering, 2012, 2, .	1.6	9
32	Comparison of the analytical models to determine modulus of rupture of self-compacting concrete and conventional concrete., 2012, , 1105-1112.		2