John Encarnacion

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11518591/publications.pdf

Version: 2024-02-01

567281 552781 1,061 25 15 26 citations h-index g-index papers 26 26 26 934 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	New ages from the Shackleton Glacier area and their context in the regional tectonomagmatic evolution of the Ross orogen of Antarctica. International Geology Review, 2021, 63, 1596-1618.	2.1	4
2	Correlation and Late-Stage Deformation of Liv Group Volcanics in the Ross-Delamerian Orogen, Antarctica, from New U-Pb Ages. Journal of Geology, 2018, 126, 307-323.	1.4	9
3	Surface alteration of a melilitite-clan carbonatite and the potential for remote carbonatite detection. Ore Geology Reviews, 2018, 92, 19-28.	2.7	3
4	Emplacement of ultramafic-carbonatite intrusions along reactivated North American mid-continent rift structures. Tectonophysics, 2017, 712-713, 716-722.	2.2	1
5	Unclear causes for subduction. Nature Geoscience, 2016, 9, 338-338.	12.9	7
6	Rapid conversion of an oceanic spreading center to a subduction zone inferred from high-precision geochronology. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7359-E7366.	7.1	56
7	Carbonatite associated with ultramafic diatremes in the Avon Volcanic District, Missouri, USA: Field, petrographic, and geochemical constraints. Lithos, 2016, 248-251, 506-516.	1.4	4
8	Geochronology and geochemistry of submarine volcanic rocks in the Yamansu iron deposit, Eastern Tianshan Mountains, NW China: Constraints on the metallogenesis. Ore Geology Reviews, 2014, 56, 487-502.	2.7	137
9	Geology, tectonic settings and iron ore metallogenesis associated with submarine volcanism in China: An overview. Ore Geology Reviews, 2014, 57, 498-517.	2.7	48
10	Platinum-group elemental and Re–Os isotopic geochemistry of the Wajilitag and Puchang Fe–Ti–V oxide deposits, northwestern Tarim Large Igneous Province. Ore Geology Reviews, 2014, 57, 589-601.	2.7	15
11	Reply to the comment on "Geochronology and geochemistry of submarine volcanic rocks in the Yamansu iron deposit, Eastern Tianshan Mountains, NW China: Constraints on the metallogenesis―by Hou et al Ore Geology Reviews, 2014, 63, 346-347.	2.7	2
12	The role of recycled oceanic crust in magmatism and metallogeny: Os–Sr–Nd isotopes, U–Pb geochronology and geochemistry of picritic dykes in the Panzhihua giant Fe–Ti oxide deposit, central Emeishan large igneous province, SW China. Contributions To Mineralogy and Petrology, 2013, 165, 805-822.	3.1	53
13	Petrogenesis and metallogenesis of the Taihe gabbroic intrusion associated with Fe–Ti-oxide ores in the Panxi district, Emeishan Large Igneous Province, southwest China. Ore Geology Reviews, 2012, 49, 109-127.	2.7	56
14	Geochronology/geochemistry of the Washan dioritic porphyry associated with Kiruna-type iron ores, Middle-Lower Yangtze River Valley, eastern China: implications for petrogenesis/mineralization. International Geology Review, 2012, 54, 1332-1352.	2.1	20
15	Noble gas isotopic systematics of Fe–Ti–V oxide ore-related mafic–ultramafic layered intrusions in the Panxi area, China: The role of recycled oceanic crust in their petrogenesis. Geochimica Et Cosmochimica Acta, 2011, 75, 6727-6741.	3.9	56
16	Geochemistry of Late Mesozoic dioritic porphyries associated with Kiruna-style and stratabound carbonate-hosted Zhonggu iron ores, Middle–Lower Yangtze Valley, Eastern China: Constraints on petrogenesis and iron sources. Lithos, 2010, 119, 330-344.	1.4	38
17	Late Sinistral Shearing along Gondwana's Paleoâ€Pacific Margin in the Ross Orogen, Antarctica: New Structure and Age Data from the O'Brien Peak Area. Journal of Geology, 2008, 116, 303-312.	1.4	13
18	Northern Philippine Ophiolites: Modern Analogues to Precambrian Ophiolites?. Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: A Focus on South Western Gondwana, 2004, , 615-626.	0.2	2

#	Article	IF	CITATION
19	Multiple ophiolite generation preserved in the northern Philippines and the growth of an island arc complex. Tectonophysics, 2004, 392, 103-130.	2.2	56
20	Terranes or Cambrian polar wander: New data from the Scott Glacier area, Transantarctic Mountains, Antarctica. Tectonics, 2000, 19, 168-181.	2.8	21
21	Subduction components and the generation of arc-like melts in the Zambales ophiolite, Philippines: Pb, Sr and Nd isotopic constraints. Chemical Geology, 1999, 156, 343-357.	3.3	25
22	A Uâ€Pb Age for the Cambrian Taylor Formation, Antarctica: Implications for the Cambrian Time Scale. Journal of Geology, 1999, 107, 497-504.	1.4	50
23	Age and geochemistry of an  anorogenic' crustal melt and implications for I-type granite petrogenesis. Lithos, 1997, 42, 1-13.	1.4	30
24	Changing magmatic and tectonic styles along the paleo-Pacific margin of Gondwana and the onset of early Paleozoic magmatism in Antarctica. Tectonics, 1996, 15, 1325-1341.	2.8	116
25	Synchronous emplacement of Ferrar and Karoo dolerites and the early breakup of Gondwana. Geology, 1996, 24, 535.	4.4	237