Laura Carrington

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11518294/publications.pdf

Version: 2024-02-01

1163117 1372567 1,102 20 8 10 citations g-index h-index papers 20 20 20 1137 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Recent developments in the general atomic and molecular electronic structure system. Journal of Chemical Physics, 2020, 152, 154102.	3.0	734
2	PEBIL: Efficient static binary instrumentation for Linux. , 2010, , .		105
3	A performance prediction framework for scientific applications. Future Generation Computer Systems, 2006, 22, 336-346.	7.5	70
4	PSINS: An Open Source Event Tracer and Execution Simulator for MPI Applications. Lecture Notes in Computer Science, 2009, , 135-148.	1.3	37
5	A Performance Prediction Framework for Scientific Applications. Lecture Notes in Computer Science, 2003, , 926-935.	1.3	33
6	PEBIL: binary instrumentation for practical data-intensive program analysis. Cluster Computing, 2015, 18, 1-14.	5.0	25
7	An idiom-finding tool for increasing productivity of accelerators. , 2011, , .		19
8	Evaluation of emerging memory technologies for HPC, data intensive applications. , 2014, , .		15
9	Making the Most of SMT in HPC. Transactions on Architecture and Code Optimization, 2015, 11, 1-26.	2.0	11
10	ADAMANT: Tools to Capture, Analyze, and Manage Data Movement. Procedia Computer Science, 2016, 80, 450-460.	2.0	9
11	PSnAP: Accurate Synthetic Address Streams through Memory Profiles. Lecture Notes in Computer Science, 2010, , 353-367.	1.3	9
12	CHARACTERIZING LARGE-SCALE HPC APPLICATIONS THROUGH TRACE EXTRAPOLATION. Parallel Processing Letters, 2013, 23, 1340008.	0.6	8
13	Understanding the performance of stencil computations on Intel's Xeon Phi. , 2013, , .		7
14	Efficient speed (ES): Adaptive DVFS and clock modulation for energy efficiency. , 2014, , .		7
15	Efficient HPC Data Motion via Scratchpad Memory. , 2012, , .		3
16	Toward application-specific memory reconfiguration for energy efficiency. , 2013, , .		3
17	Optimizing codes on the Xeon Phi. , 2015, , .		3
18	VecMeter: Measuring Vectorization on the Xeon Phi., 2015,,.		2

#	Article	IF	CITATIONS
19	Recent Advances in Scaling Up Complex Fluid-Structure Interaction Simulations. , 2017, , .		1
20	Running largeâ€scale CFD applications on Intelâ€KNL–based clusters. International Journal for Numerical Methods in Fluids, 2018, 86, 699-716.	1.6	1