
Chenyu Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/115180/publications.pdf Version: 2024-02-01

CHENVU XU

#	Article	IF	CITATIONS
1	Directionally maximizing CO selectivity to near-unity over cupric oxide with indium species for electrochemical CO2 reduction. Chemical Engineering Journal, 2022, 427, 131654.	12.7	18
2	Interfaceâ€Induced Electrocatalytic Enhancement of CO ₂ â€ŧoâ€Formate Conversion on Heterostructured Bismuthâ€Based Catalysts. Small, 2022, 18, e2105682.	10.0	53
3	Photothermal Chemistry Based on Solar Energy: From Synergistic Effects to Practical Applications. Advanced Science, 2022, 9, e2103926.	11.2	61
4	Anode-cathode interchangeable strategy for in situ reviving electrocatalysts' critical active sites for highly stable methanol upgrading and hydrogen evolution reactions. Applied Catalysis B: Environmental, 2022, 305, 121082.	20.2	21
5	Photothermal Catalytic Water Splitting at Diverse Two-Phase Interfaces Based on Cu–TiO ₂ . ACS Applied Energy Materials, 2022, 5, 4564-4576.	5.1	12
6	Regulating the Electron Localization of Metallic Bismuth for Boosting CO2 Electroreduction. Nano-Micro Letters, 2022, 14, 38.	27.0	21
7	Carbon Dioxide Valorization via Formate Electrosynthesis in a Wide Potential Window. Advanced Functional Materials, 2022, 32, .	14.9	37
8	Hollow NiSe Nanocrystals Heterogenized with Carbon Nanotubes for Efficient Electrocatalytic Methanol Upgrading to Boost Hydrogen Coâ€Production. Advanced Functional Materials, 2021, 31, 2008812.	14.9	84
9	Interfacial engineering of Cu2Se/Co3Se4 multivalent hetero-nanocrystals for energy-efficient electrocatalytic co-generation of value-added chemicals and hydrogen. Applied Catalysis B: Environmental, 2021, 285, 119800.	20.2	51
10	CO2-emission-free electrocatalytic CH3OH selective upgrading with high productivity at large current densities for energy saved hydrogen co-generation. Nano Energy, 2021, 80, 105530.	16.0	76
11	Co- and N-doped carbon nanotubes with hierarchical pores derived from metal–organic nanotubes for oxygen reduction reaction. Journal of Energy Chemistry, 2021, 53, 49-55.	12.9	18
12	Photothermal Catalysis for Selective CO ₂ Reduction on the Modified Anatase TiO ₂ (101) Surface. ACS Applied Energy Materials, 2021, 4, 7702-7709.	5.1	21
13	Theoretical Study of Oxygen Vacancy on Indium Oxide for Promoted Photothermal Catalytic Water Splitting. Journal of Physical Chemistry C, 2021, 125, 19294-19300.	3.1	4
14	Oxygen-vacancy-anchoring Ni O loading towards efficient hydrogen evolution via photo-thermal coupling reaction. Journal of Energy Chemistry, 2021, 61, 77-87.	12.9	8
15	Accelerating photoelectric CO2 conversion with a photothermal wavelength-dependent plasmonic local field. Applied Catalysis B: Environmental, 2021, 298, 120533.	20.2	17
16	Standalone Solar Carbon-Based Fuel Production Based on Semiconductors. Cell Reports Physical Science, 2020, 1, 100101.	5.6	18
17	Visible light-responding perovskite oxide catalysts for photo-thermochemical CO2 reduction. Catalysis Communications, 2020, 138, 105955.	3.3	21
18	Novel folic acid complex derived nitrogen and nickel co-doped carbon nanotubes with embedded Ni nanoparticles as efficient electrocatalysts for CO ₂ reduction. Journal of Materials Chemistry A, 2020, 8, 5105-5114.	10.3	18

Снемуи Хи

#	Article	IF	CITATIONS
19	Pathway Alteration of Water Splitting via Oxygen Vacancy Formation on Anatase Titanium Dioxide in Photothermal Catalysis. Journal of Physical Chemistry C, 2020, 124, 26214-26221.	3.1	19
20	United Conversion Process Coupling CO ₂ Mineralization with Thermochemical Hydrogen Production. Environmental Science & amp; Technology, 2019, 53, 12091-12100.	10.0	3
21	Enhanced Solar Conversion of CO ₂ to CO Using Mnâ€doped TiO ₂ Based on Photoâ€thermochemical Cycle. ChemistrySelect, 2019, 4, 236-244.	1.5	7
22	Photothermal Coupling Factor Achieving CO ₂ Reduction Based on Palladium-Nanoparticle-Loaded TiO ₂ . ACS Catalysis, 2018, 8, 6582-6593.	11.2	124
23	Guiding effective nanostructure design for photo-thermochemical CO2 conversion: From DFT calculations to experimental verifications. Nano Energy, 2017, 41, 308-319.	16.0	41
24	Enhanced mechanism of the photo-thermochemical cycle based on effective Fe-doping TiO2 films and DFT calculations. Applied Catalysis B: Environmental, 2017, 204, 324-334.	20.2	75
25	Photo-thermochemical Cycle for CO ₂ Reduction based on Effective Ni ion Substitute-doped TiO ₂ . Acta Chimica Sinica, 2017, 75, 699.	1.4	7
26	A novel photo-thermochemical cycle of water-splitting for hydrogen production based on TiO 2â^'x /TiO 2. International Journal of Hydrogen Energy, 2016, 41, 2215-2221.	7.1	33
27	A novel photo-thermochemical cycle for the dissociation of CO 2 using solar energy. Applied Energy, 2015, 156, 223-229.	10.1	49