Donald J Hagler Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11517956/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microstructural development from 9 to 14 years: Evidence from the ABCD Study. Developmental Cognitive Neuroscience, 2022, 53, 101044.	1.9	28
2	Discovery of genomic loci of the human cerebral cortex using genetically informed brain atlases. Science, 2022, 375, 522-528.	6.0	31
3	Do aggregate, multimodal structural neuroimaging measures replicate regional developmental differences observed in highly cited cellular histological studies?. Developmental Cognitive Neuroscience, 2022, 54, 101086.	1.9	0
4	Associations between MRI-assessed locus coeruleus integrity and cortical gray matter microstructure. Cerebral Cortex, 2022, 32, 4191-4203.	1.6	9
5	The Impact of Genes and Environment on Brain Ageing in Males Aged 51 to 72 Years. Frontiers in Aging Neuroscience, 2022, 14, 831002.	1.7	3
6	Multivariate genome-wide association study on tissue-sensitive diffusion metrics highlights pathways that shape the human brain. Nature Communications, 2022, 13, 2423.	5.8	12
7	Genetic and environmental influences on structural- and diffusion-based Alzheimer's disease neuroimaging signatures across midlife and early old age. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2022, , .	1.1	0
8	Biophysically detailed forward modeling of the neural origin of EEG and MEG signals. NeuroImage, 2021, 225, 117467.	2.1	37
9	Brain microstructure mediates sex-specific patterns of cognitive aging. Aging, 2021, 13, 3218-3238.	1.4	6
10	MRIâ€assessed locus coeruleus integrity is heritable and associated with multiple cognitive domains, mild cognitive impairment, and daytime dysfunction. Alzheimer's and Dementia, 2021, 17, 1017-1025.	0.4	41
11	Age and Sex Differences in the Associations of Pulse Pressure With White Matter and Subcortical Microstructure. Hypertension, 2021, 77, 938-947.	1.3	16
12	Periventricular and deep abnormal white matter differ in associations with cognitive performance at midlife Neuropsychology, 2021, 35, 252-264.	1.0	3
13	12-year prediction of mild cognitive impairment aided by Alzheimer's brain signatures at mean age 56. Brain Communications, 2021, 3, fcab167.	1.5	7
14	Brain structure associations with phonemic and semantic fluency in typically-developing children. Developmental Cognitive Neuroscience, 2021, 50, 100982.	1.9	11
15	Atypical genomic cortical patterning in autism with poor early language outcome. Science Advances, 2021, 7, eabh1663.	4.7	21
16	Vertex-wise multivariate genome-wide association study identifies 780 unique genetic loci associated with cortical morphology. Neurolmage, 2021, 244, 118603.	2.1	48
17	Lifestyle and the aging brain: interactive effects of modifiable lifestyle behaviors and cognitive ability in men from midlife to old age. Neurobiology of Aging, 2021, 108, 80-89.	1.5	11
18	Paradoxical cognitive trajectories in men from earlier to later adulthood. Neurobiology of Aging, 2021, 109, 229-238.	1.5	2

#	Article	IF	CITATIONS
19	Associations Between Microstructure, Amyloid, and Cognition in Amnestic Mild Cognitive Impairment and Dementia. Journal of Alzheimer's Disease, 2020, 73, 347-357.	1.2	15
20	Correction of respiratory artifacts in MRI head motion estimates. NeuroImage, 2020, 208, 116400.	2.1	161
21	Nucleus accumbens cytoarchitecture predicts weight gain in children. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26977-26984.	3.3	47
22	Associations between age and brain microstructure in older community-dwelling men and women: the Rancho Bernardo Study. Neurobiology of Aging, 2020, 95, 94-103.	1.5	10
23	Behavioral and Neural Signatures of Working Memory in Childhood. Journal of Neuroscience, 2020, 40, 5090-5104.	1.7	50
24	Image processing and analysis methods for the Adolescent Brain Cognitive Development Study. NeuroImage, 2019, 202, 116091.	2.1	539
25	Influence of young adult cognitive ability and additional education on later-life cognition. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2021-2026.	3.3	100
26	Resting State Abnormalities of the Default Mode Network in Mild Cognitive Impairment: A Systematic Review and Meta-Analysis. Journal of Alzheimer's Disease, 2019, 70, 107-120.	1.2	79
27	Differential sensitivity of structural, diffusion, and restingâ€state functional <scp>MRI</scp> for detecting brain alterations and verbal memory impairment in temporal lobe epilepsy. Epilepsia, 2019, 60, 935-947.	2.6	20
28	Genetic architecture of hippocampal subfields on standard resolution MRI: How the parts relate to the whole. Human Brain Mapping, 2019, 40, 1528-1540.	1.9	16
29	Predominantly global genetic influences on individual white matter tract microstructure. Neurolmage, 2019, 184, 871-880.	2.1	18
30	Heterogeneous Origins of Human Sleep Spindles in Different Cortical Layers. Journal of Neuroscience, 2018, 38, 3013-3025.	1.7	40
31	Alcohol intake and brain white matter in middle aged men: Microscopic and macroscopic differences. Neurolmage: Clinical, 2018, 18, 390-398.	1.4	30
32	Genetic relatedness of axial and radial diffusivity indices of cerebral white matter microstructure in late middle age. Human Brain Mapping, 2018, 39, 2235-2245.	1.9	12
33	The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites. Developmental Cognitive Neuroscience, 2018, 32, 43-54.	1.9	1,282
34	Negative fateful life events in midlife and advanced predicted brain aging. Neurobiology of Aging, 2018, 67, 1-9.	1.5	37
35	Decreased neurite density within frontostriatal networks is associated with executive dysfunction in temporal lobe epilepsy. Epilepsy and Behavior, 2018, 78, 187-193.	0.9	18
36	Cortical morphology of the pars opercularis and its relationship to motor-inhibitory performance in a longitudinal, developing cohort. Brain Structure and Function, 2018, 223, 211-220.	1.2	24

#	Article	IF	CITATIONS
37	Microstructural brain changes track cognitive decline in mild cognitive impairment. NeuroImage: Clinical, 2018, 20, 883-891.	1.4	26
38	Brain structure mediates the association between height and cognitive ability. Brain Structure and Function, 2018, 223, 3487-3494.	1.2	18
39	Williams Syndrome neuroanatomical score associates with GTF2IRD1 in large-scale magnetic resonance imaging cohorts: a proof of concept for multivariate endophenotypes. Translational Psychiatry, 2018, 8, 114.	2.4	6
40	Developmental differentiation of executive functions on the NIH Toolbox Cognition Battery Neuropsychology, 2018, 32, 777-783.	1.0	34
41	Genetic and environmental influences on mean diffusivity and volume in subcortical brain regions. Human Brain Mapping, 2017, 38, 2589-2598.	1.9	15
42	Williams syndrome-specific neuroanatomical profile and its associations with behavioral features. NeuroImage: Clinical, 2017, 15, 343-347.	1.4	33
43	Heritability of white matter microstructure in late middle age: A twin study of tractâ€based fractional anisotropy and absolute diffusivity indices. Human Brain Mapping, 2017, 38, 2026-2036.	1.9	44
44	Task-evoked pupil dilation and BOLD variance as indicators of locus coeruleus dysfunction. Cortex, 2017, 97, 60-69.	1.1	45
45	Genetic and environmental influences on cortical mean diffusivity. NeuroImage, 2017, 146, 90-99.	2.1	37
46	Sensitivity of restriction spectrum imaging to memory and neuropathology in Alzheimer's disease. Alzheimer's Research and Therapy, 2017, 9, 55.	3.0	25
47	The roadmap for estimation of cell-type-specific neuronal activity from non-invasive measurements. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150356.	1.8	41
48	Neurodevelopmental origins of lifespan changes in brain and cognition. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9357-9362.	3.3	163
49	Is bigger always better? The importance of cortical configuration with respect to cognitive ability. NeuroImage, 2016, 129, 356-366.	2.1	36
50	Anxiety is related to indices of cortical maturation in typically developing children and adolescents. Brain Structure and Function, 2016, 221, 3013-3025.	1.2	43
51	Dyslexia and language impairment associated genetic markers influence cortical thickness and white matter in typically developing children. Brain Imaging and Behavior, 2016, 10, 272-282.	1.1	27
52	Diffusion Tensor Imaging Provides Evidence of Possible Axonal Overconnectivity in Frontal Lobes in Autism Spectrum Disorder Toddlers. Biological Psychiatry, 2016, 79, 676-684.	0.7	134
53	The Pediatric Imaging, Neurocognition, and Genetics (PING) Data Repository. NeuroImage, 2016, 124, 1149-1154.	2.1	251
54	Does degree of gyrification underlie the phenotypic and genetic associations between cortical surface area and cognitive ability?. NeuroImage, 2015, 106, 154-160.	2.1	32

#	Article	IF	CITATIONS
55	The Genetic Association Between Neocortical Volume and General Cognitive Ability Is Driven by Global Surface Area Rather Than Thickness. Cerebral Cortex, 2015, 25, 2127-2137.	1.6	84
56	Modeling the 3D Geometry of the Cortical Surface with Genetic Ancestry. Current Biology, 2015, 25, 1988-1992.	1.8	34
57	Large-scale genomics unveil polygenic architecture of human cortical surface area. Nature Communications, 2015, 6, 7549.	5.8	30
58	Hypertension-Related Alterations in White Matter Microstructure Detectable in Middle Age. Hypertension, 2015, 66, 317-323.	1.3	61
59	Optimization of retinotopy constrained source estimation constrained by prior. Human Brain Mapping, 2014, 35, 1815-1833.	1.9	12
60	Visual field asymmetries in visual evoked responses. Journal of Vision, 2014, 14, 13-13.	0.1	31
61	Spatio-temporal processing of words and nonwords: Hemispheric laterality and acute alcohol intoxication. Brain Research, 2014, 1558, 18-32.	1.1	13
62	White matter microstructure complements morphometry for predicting verbal memory in epilepsy. Cortex, 2014, 58, 139-150.	1.1	47
63	Improved method for retinotopy constrained source estimation of visualâ€evoked responses. Human Brain Mapping, 2013, 34, 665-683.	1.9	15
64	Brain development and aging: Overlapping and unique patterns of change. NeuroImage, 2013, 68, 63-74.	2.1	240
65	Long-term influence of normal variation in neonatal characteristics on human brain development. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20089-20094.	3.3	158
66	Higher education is not associated with greater cortical thickness in brain areas related to literacy or intelligence in normal aging or mild cognitive impairment. Journal of Clinical and Experimental Neuropsychology, 2012, 34, 925-935.	0.8	17
67	Multimodal imaging of the self-regulating developing brain. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19620-19625.	3.3	192
68	Identification of common variants associated with human hippocampal and intracranial volumes. Nature Genetics, 2012, 44, 552-561.	9.4	594
69	Relationship between regional atrophy rates and cognitive decline in mild cognitive impairment. Neurobiology of Aging, 2012, 33, 242-253.	1.5	94
70	Neuroanatomical Assessment of Biological Maturity. Current Biology, 2012, 22, 1693-1698.	1.8	328
71	MRI analysis in temporal lobe epilepsy: Cortical thinning and white matter disruptions are related to side of seizure onset. Epilepsia, 2011, 52, 2257-2266.	2.6	131
72	Mild Cognitive Impairment: Baseline and Longitudinal Structural MR Imaging Measures Improve Predictive Prognosis. Radiology, 2011, 259, 834-843.	3.6	84

#	Article	IF	CITATIONS
73	Brain substrates of learning and retention in mild cognitive impairment diagnosis and progression to Alzheimer's disease. Neuropsychologia, 2010, 48, 1237-1247.	0.7	75
74	Level of Executive Function Influences Verbal Memory in Amnestic Mild Cognitive Impairment and Predicts Prefrontal and Posterior Cingulate Thickness. Cerebral Cortex, 2010, 20, 1305-1313.	1.6	104
75	Neuroimaging Enrichment Strategy for Secondary Prevention Trials in Alzheimer Disease. Alzheimer Disease and Associated Disorders, 2010, 24, 269-277.	0.6	42
76	CSF Biomarkers in Prediction of Cerebral and Clinical Change in Mild Cognitive Impairment and Alzheimer's Disease. Journal of Neuroscience, 2010, 30, 2088-2101.	1.7	188
77	Relative Capability of MR Imaging and FDG PET to Depict Changes Associated with Prodromal and Early Alzheimer Disease. Radiology, 2010, 256, 932-942.	3.6	107
78	Cortical Thickness Is Influenced by Regionally Specific Genetic Factors. Biological Psychiatry, 2010, 67, 493-499.	0.7	124
79	Cortical Thickness and Subcortical Volumes in Schizophrenia and Bipolar Disorder. Biological Psychiatry, 2010, 68, 41-50.	0.7	406
80	Multimodal imaging of repetition priming: Using fMRI, MEG, and intracranial EEG to reveal spatiotemporal profiles of word processing. NeuroImage, 2010, 53, 707-717.	2.1	77
81	Brain Atrophy in Healthy Aging Is Related to CSF Levels of AÎ ² 1-42. Cerebral Cortex, 2010, 20, 2069-2079.	1.6	102
82	Structural Neuroimaging in the Detection and Prognosis of Pre-Clinical and Early AD. Behavioural Neurology, 2009, 21, 3-12.	1.1	48
83	One-Year Brain Atrophy Evident in Healthy Aging. Journal of Neuroscience, 2009, 29, 15223-15231.	1.7	561
84	Alzheimer Disease: Quantitative Structural Neuroimaging for Detection and Prediction of Clinical and Structural Changes in Mild Cognitive Impairment. Radiology, 2009, 251, 195-205.	3.6	293
85	Subregional neuroanatomical change as a biomarker for Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20954-20959.	3.3	198
86	Source estimates for MEG/EEG visual evoked responses constrained by multiple, retinotopicallyâ€mapped stimulus locations. Human Brain Mapping, 2009, 30, 1290-1309.	1.9	52
87	Automated whiteâ€matter tractography using a probabilistic diffusion tensor atlas: Application to temporal lobe epilepsy. Human Brain Mapping, 2009, 30, 1535-1547.	1.9	217
88	Structural MRI biomarkers for preclinical and mild Alzheimer's disease. Human Brain Mapping, 2009, 30, 3238-3253.	1.9	201
89	Structural neuroimaging in the detection and prognosis of pre-clinical and early AD. Behavioural Neurology, 2009, 21, 3-12.	1.1	24
90	Human cortical representations for reaching: Mirror neurons for execution, observation, and imagery. Neurolmage, 2007, 37, 1315-1328.	2.1	501

#	Article	IF	CITATIONS
91	Spatial maps in frontal and prefrontal cortex. NeuroImage, 2006, 29, 567-577.	2.1	214
92	Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data. NeuroImage, 2006, 33, 1093-1103.	2.1	681