Rainer Ng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11517642/publications.pdf

Version: 2024-02-01

6 papers	263 citations	1478505 6 h-index	1872680 6 g-index
6	6	6	531
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Skeletal Muscle Contractions Induce Acute Changes in Cytosolic Superoxide, but Slower Responses in Mitochondrial Superoxide and Cellular Hydrogen Peroxide. PLoS ONE, 2014, 9, e96378.	2.5	88
2	Poloxamer 188 reduces the contraction-induced force decline in lumbrical muscles from <i>mdx</i> mdxmice. American Journal of Physiology - Cell Physiology, 2008, 295, C146-C150.	4.6	54
3	A highly functional mini-dystrophin / GFP fusion gene for cell and gene therapy studies of Duchenne muscular dystrophy. Human Molecular Genetics, 2006, 15, 1610-1622.	2.9	52
4	Animal Models of Muscular Dystrophy. Progress in Molecular Biology and Translational Science, 2012, 105, 83-111.	1.7	37
5	DIAPHRAGM MUSCLE STRIP PREPARATION FOR EVALUATION OF GENE THERAPIES IN <i>mdx</i> MICE. Clinical and Experimental Pharmacology and Physiology, 2008, 35, 725-729.	1.9	24
6	Mouse forepaw lumbrical muscles are resistant to age-related declines in force production. Experimental Gerontology, 2015, 65, 42-45.	2.8	8