
Francois Fay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1151655/publications.pdf Version: 2024-02-01

EDANCOLS FAV

#	Article	IF	CITATIONS
1	Skin Dendritic Cell Targeting <i>via</i> Microneedle Arrays Laden with Antigen-Encapsulated Poly- <scp>d</scp> , <scp>l</scp> -lactide- <i>co</i> -Glycolide Nanoparticles Induces Efficient Antitumor and Antiviral Immune Responses. ACS Nano, 2013, 7, 2042-2055.	14.6	192
2	Inhibiting macrophage proliferation suppresses atherosclerotic plaque inflammation. Science Advances, 2015, 1, .	10.3	173
3	Probing nanoparticle translocation across the permeable endothelium in experimental atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1078-1083.	7.1	171
4	Inhibiting Inflammation with Myeloid Cell-Specific Nanobiologics Promotes Organ Transplant Acceptance. Immunity, 2018, 49, 819-828.e6.	14.3	161
5	Targeting CD40-Induced TRAF6 Signaling in Macrophages Reduces Atherosclerosis. Journal of the American College of Cardiology, 2018, 71, 527-542.	2.8	149
6	Targeting Siglecs with a sialic acid–decorated nanoparticle abrogates inflammation. Science Translational Medicine, 2015, 7, 303ra140.	12.4	142
7	Antibody-targeted nanoparticles for cancer therapy. Immunotherapy, 2011, 3, 381-394.	2.0	140
8	Hyaluronan Nanoparticles Selectively Target Plaque-Associated Macrophages and Improve Plaque Stability in Atherosclerosis. ACS Nano, 2017, 11, 5785-5799.	14.6	137
9	HDL-Mimetic PLGA Nanoparticle To Target Atherosclerosis Plaque Macrophages. Bioconjugate Chemistry, 2015, 26, 443-451.	3.6	127
10	Polyglucose nanoparticles with renal elimination and macrophage avidity facilitate PET imaging in ischaemic heart disease. Nature Communications, 2017, 8, 14064.	12.8	118
11	Antibody Targeting of Camptothecin-Loaded PLGA Nanoparticles to Tumor Cells. Bioconjugate Chemistry, 2008, 19, 1561-1569.	3.6	111
12	Augmenting drug–carrier compatibility improves tumour nanotherapy efficacy. Nature Communications, 2016, 7, 11221.	12.8	111
13	Atherosclerotic Plaque Targeting Mechanism of Long-Circulating Nanoparticles Established by Multimodal Imaging. ACS Nano, 2015, 9, 1837-1847.	14.6	105
14	Single Step Reconstitution of Multifunctional High-Density Lipoprotein-Derived Nanomaterials Using Microfluidics. ACS Nano, 2013, 7, 9975-9983.	14.6	104
15	Immune cell screening of a nanoparticle library improves atherosclerosis therapy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6731-E6740.	7.1	95
16	Efficacy and safety assessment of a TRAF6-targeted nanoimmunotherapy in atherosclerotic mice and non-human primates. Nature Biomedical Engineering, 2018, 2, 279-292.	22.5	94
17	Microneedle-mediated intradermal nanoparticle delivery: Potential for enhanced local administration of hydrophobic pre-formed photosensitisers. Photodiagnosis and Photodynamic Therapy, 2010, 7, 222-231.	2.6	77
18	Gold Nanocrystal Labeling Allows Low-Density Lipoprotein Imaging from the Subcellular to Macroscopic Level. ACS Nano, 2013, 7, 9761-9770.	14.6	77

FRANCOIS FAY

#	Article	IF	CITATIONS
19	Enhanced Antitumor Activity of the Photosensitizer <i>meso</i> -Tetra(<i>N</i> -methyl-4-pyridyl) Porphine Tetra Tosylate through Encapsulation in Antibody-Targeted Chitosan/Alginate Nanoparticles. Biomacromolecules, 2013, 14, 302-310.	5.4	72
20	Nanobody-Facilitated Multiparametric PET/MRI Phenotyping of Atherosclerosis. JACC: Cardiovascular Imaging, 2019, 12, 2015-2026.	5.3	66
21	Conatumumab (AMG 655) coated nanoparticles for targeted pro-apoptotic drug delivery. Biomaterials, 2011, 32, 8645-8653.	11.4	62
22	Near-Infrared Fluorescence Energy Transfer Imaging of Nanoparticle Accumulation and Dissociation Kinetics in Tumor-Bearing Mice. ACS Nano, 2013, 7, 10362-10370.	14.6	60
23	Neutrophil derived CSF1 induces macrophage polarization and promotes transplantation tolerance. American Journal of Transplantation, 2018, 18, 1247-1255.	4.7	58
24	Gene delivery using dimethyldidodecylammonium bromide-coated PLGA nanoparticles. Biomaterials, 2010, 31, 4214-4222.	11.4	51
25	Imaging-assisted nanoimmunotherapy for atherosclerosis in multiple species. Science Translational Medicine, 2019, 11, .	12.4	51
26	A systematic comparison of clinically viable nanomedicines targeting HMG-CoA reductase in inflammatory atherosclerosis. Journal of Controlled Release, 2017, 262, 47-57.	9.9	44
27	Probing myeloid cell dynamics in ischaemic heart disease by nanotracer hot-spot imaging. Nature Nanotechnology, 2020, 15, 398-405.	31.5	42
28	Prosaposin mediates inflammation in atherosclerosis. Science Translational Medicine, 2021, 13, .	12.4	42
29	PET/MR Imaging of Malondialdehyde-Acetaldehyde Epitopes With a HumanÂAntibody Detects ClinicallyÂRelevant Atherothrombosis. Journal of the American College of Cardiology, 2018, 71, 321-335.	2.8	39
30	Efficient Drug Delivery and Induction of Apoptosis in Colorectal Tumors Using a Death Receptor 5-Targeted Nanomedicine. Molecular Therapy, 2014, 22, 2083-2092.	8.2	37
31	Nanomedicine-based delivery strategies for nucleic acid gene inhibitors in inflammatory diseases. Advanced Drug Delivery Reviews, 2021, 175, 113809.	13.7	30
32	Realâ€Time Monitoring of Nanoparticle Formation by FRET Imaging. Angewandte Chemie - International Edition, 2017, 56, 2923-2926.	13.8	27
33	Multimodal Positron Emission Tomography Imaging to Quantify Uptake of ⁸⁹ Zr-Labeled Liposomes in the Atherosclerotic Vessel Wall. Bioconjugate Chemistry, 2020, 31, 360-368.	3.6	22
34	Investigating the Cellular Specificity in Tumors of a Surface-Converting Nanoparticle by Multimodal Imaging. Bioconjugate Chemistry, 2017, 28, 1413-1421.	3.6	13
35	Recent advances in the application of antibodies as therapeutics. Future Medicinal Chemistry, 2012, 4, 73-86.	2.3	10
36	Realâ€Time Monitoring of Nanoparticle Formation by FRET Imaging. Angewandte Chemie, 2017, 129, 2969-2972.	2.0	7

Francois Fay

#	Article	IF	CITATIONS
37	Nanocrystal Core Lipoprotein Biomimetics for Imaging of Lipoproteins and Associated Diseases. Current Cardiovascular Imaging Reports, 2013, 6, 45-54.	0.6	6
38	Conformational Changes in High-Density Lipoprotein Nanoparticles Induced by High Payloads of Paramagnetic Lipids. ACS Omega, 2016, 1, 470-475.	3.5	4
39	Development and Multiparametric Evaluation of Experimental Atherosclerosis in Rabbits. Methods in Molecular Biology, 2018, 1816, 385-400.	0.9	4
40	Recent Innovations in Antibody-Mediated, Targeted Particulate Nanotechnology and Implications for Advanced Visualisation and Drug Delivery. Current Nanoscience, 2010, 6, 560-570.	1.2	1