
Rodrigo da Silva Nunes Barreto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/115145/publications.pdf Version: 2024-02-01

Rodrigo da Silva Nunes

#	Article	IF	CITATIONS
1	The Gametic Synapse: RNA Transfer to the Bovine Oocyte1. Biology of Reproduction, 2014, 91, 90.	1.2	148
2	Modulation of Maternal Immune System During Pregnancy in the Cow. Reproduction in Domestic Animals, 2012, 47, 384-393.	0.6	53
3	Macrophageâ€derived <scp>GPNMB</scp> accelerates skin healing. Experimental Dermatology, 2018, 27, 630-635.	1.4	26
4	Perivascular cell αv integrins as a target to treat skeletal muscle fibrosis. International Journal of Biochemistry and Cell Biology, 2018, 99, 109-113.	1.2	23
5	Fetal-Maternal Interactions in the Synepitheliochorial Placenta Using the eGFP Cloned Cattle Model. PLoS ONE, 2013, 8, e64399.	1.1	18
6	Decellularized bovine cotyledons may serve as biological scaffolds with preserved vascular arrangement. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1880-e1888.	1.3	16
7	Pericytes in the Placenta: Role in Placental Development and Homeostasis. Advances in Experimental Medicine and Biology, 2019, 1122, 125-151.	0.8	16
8	Rabbit olfactory stem cells. Isolation protocol and characterization. Acta Cirurgica Brasileira, 2016, 31, 59-66.	0.3	13
9	Gene expression in placentation of farm animals: An overview of gene function during development. Theriogenology, 2011, 76, 589-597.	0.9	11
10	Muscle reorganisation through local injection of stem cells in the diaphragm of mdx mice. Acta Veterinaria Scandinavica, 2012, 54, 73.	0.5	11
11	Vascularization and VECF expression altered in bovine yolk sacs from IVF and NT technologies. Theriogenology, 2017, 87, 290-297.	0.9	11
12	Key characteristics of the ovary and uterus for reproduction with particular reference to poly ovulation in the plains viscacha (Lagostomus maximus, chinchillidae). Theriogenology, 2020, 142, 184-195.	0.9	11
13	Optimization of Canine Placenta Decellularization: An Alternative Source of Biological Scaffolds for Regenerative Medicine. Cells Tissues Organs, 2018, 205, 217-225.	1.3	10
14	Mouse placental scaffolds: a three-dimensional environment model for recellularization. Journal of Tissue Engineering, 2019, 10, 204173141986796.	2.3	10
15	Central Nervous System and Vertebrae Development in Horses: a Chronological Study with Differential Temporal Expression of Nestin and GFAP. Journal of Molecular Neuroscience, 2017, 61, 61-78.	1.1	8
16	Organogenesis of the Musculoskeletal System in Horse Embryos and Early Fetuses. Anatomical Record, 2016, 299, 722-729.	0.8	7
17	Calotropis procera (Aiton) Dryand (Apocynaceae) as an anti-cancer agent against canine mammary tumor and osteosarcoma cells. Research in Veterinary Science, 2021, 138, 79-89.	0.9	7
18	Domestic Carnivore's Development: Detection of Octâ€4, A Pluripotency Marker, in Pharyngeal Arches. Reproduction in Domestic Animals, 2013, 48, e41-3.	0.6	6

Rodrigo da Silva Nunes

#	Article	IF	CITATIONS
19	Comparison between placental and skeletal muscle ECM: <i>in vivo</i> implantation. Connective Tissue Research, 2021, 62, 629-642.	1.1	6
20	Reproductive system development in male and female horse embryos and fetuses: Gonadal hyperplasia revisited. Theriogenology, 2018, 108, 118-126.	0.9	5
21	Establishment of 3-dimensional scaffolds from hemochorial placentas. Placenta, 2019, 81, 32-41.	0.7	5
22	Proteomic profile of extracellular matrix from native and decellularized chorionic canine placenta. Journal of Proteomics, 2022, 256, 104497.	1.2	5
23	Placental scaffolds have the ability to support adiposeâ€derived cells differentiation into osteogenic and chondrogenic lineages. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 1661-1672.	1.3	4
24	Caracterização da fusão caruncular em gestações naturais e de conceptos bovinos clonados. Pesquisa Veterinaria Brasileira, 2009, 29, 779-787.	0.5	3
25	Ultrastructural analysis of the spermatogenesis in the guinea pig (Cavia porcellus). Pesquisa Veterinaria Brasileira, 2016, 36, 89-94.	0.5	2
26	ECM proteins involved in cell migration and vessel formation compromise bovine cloned placentation. Theriogenology, 2022, , .	0.9	2
27	Vascularization and VEGF expression in bovine yolk sacs: Impact of reproductive techniques. Placenta, 2016, 45, 92-93.	0.7	1
28	Equine Yolk Sac: A Stem Cells Source. International Journal of Morphology, 2020, 38, 1412-1420.	0.1	1
29	Deviations of endometrial immune cells during pregnancy in the cow. Placenta, 2014, 35, A61.	0.7	0
30	DNA global epigenetic modifications in bovine cloned placentome. Placenta, 2014, 35, A38.	0.7	0
31	Decellularized bovine cotyledon as biological scaffold for bioengineering. Placenta, 2016, 45, 126.	0.7	0
32	Optimization of protocols for decellularization of the mouse placenta. Placenta, 2016, 45, 129.	0.7	0
33	Balance of Lin28a and Lin28b in bovine trophoblast giant cells formation. Placenta, 2016, 45, 95-96.	0.7	0
34	Efeito da suplementação parenteral extra de cobre e zinco sobre a resposta imunológica de vacas Nelore. Arquivo Brasileiro De Medicina Veterinaria E Zootecnia, 2017, 69, 870-876.	0.1	0
35	Extracellular matrix structure in SCNT and natural bovine placenta conditions. Placenta, 2019, 83, e101.	0.7	0
36	Recellularization of canine placental extracellular matrix: mesenchymal stem cells applied to tissue bioengineering. Placenta, 2019, 83, e110.	0.7	0

#	Article	IF	CITATIONS
37	Bovine placenta as biological scaffold source. Placenta, 2019, 83, e109-e110.	0.7	Ο
38	Female Bioengineering: Primordial Germ Cell Differentiation of Mesenchymal Stem Cells onto Placental Scaffolds. Current Trends in Biomedical Engineering & Biosciences, 2021, 20, .	0.2	0
39	Development of a new decellularization protocol for the whole porcine heart. Journal of Clinical and Translational Research, 2021, 7, 563-574.	0.3	Ο
40	Rabbit Vomeronasal Organ-Derivered Cells Have Mesenchymal Profile and Neuronal Commitment. International Journal of Morphology, 2020, 38, 1463-1472.	0.1	0