Xiaoyang Shan

List of Publications by Citations

 $\textbf{Source:} \ https://exaly.com/author-pdf/11514491/xiaoyang-shan-publications-by-citations.pdf$

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

16 1,374 15 11 h-index g-index citations papers 16 1,614 4.03 9.3 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
15	A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. <i>Nature Chemical Biology</i> , 2008 , 4, 483-90	11.7	464
14	Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation. <i>Nature Chemical Biology</i> , 2012 , 8, 393-9	11.7	375
13	The emerging link between O-GlcNAc and Alzheimer disease. <i>Journal of Biological Chemistry</i> , 2014 , 289, 34472-81	5.4	151
12	Pharmacological inhibition of O-GlcNAcase (OGA) prevents cognitive decline and amyloid plaque formation in bigenic tau/APP mutant mice. <i>Molecular Neurodegeneration</i> , 2014 , 9, 42	19	87
11	Elevation of Global O-GlcNAc in rodents using a selective O-GlcNAcase inhibitor does not cause insulin resistance or perturb glucohomeostasis. <i>Chemistry and Biology</i> , 2010 , 17, 949-58		63
10	Mislocalization of TDP-43 in the G93A mutant SOD1 transgenic mouse model of ALS. <i>Neuroscience Letters</i> , 2009 , 458, 70-4	3.3	49
9	Fluorescence-quenched substrates for live cell imaging of human glucocerebrosidase activity. Journal of the American Chemical Society, 2015, 137, 1181-9	16.4	46
8	Metabolic Inhibitors of O-GlcNAc Transferase That Act In Vivo Implicate Decreased O-GlcNAc Levels in Leptin-Mediated Nutrient Sensing. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 7644-7648	16.4	35
7	Pharmacological Inhibition of O-GlcNAcase Enhances Autophagy in Brain through an mTOR-Independent Pathway. <i>ACS Chemical Neuroscience</i> , 2018 , 9, 1366-1379	5.7	32
6	A Convenient Approach to Stereoisomeric Iminocyclitols: Generation of Potent Brain-Permeable OGA Inhibitors. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 15429-33	16.4	31
5	Reduced protein O-glycosylation in the nervous system of the mutant SOD1 transgenic mouse model of amyotrophic lateral sclerosis. <i>Neuroscience Letters</i> , 2012 , 516, 296-301	3.3	28
4	A Convenient Approach to Stereoisomeric Iminocyclitols: Generation of Potent Brain-Permeable OGA Inhibitors. <i>Angewandte Chemie</i> , 2015 , 127, 15649-15653	3.6	6
3	Metabolic Inhibitors of O-GlcNAc Transferase That Act In Vivo Implicate Decreased O-GlcNAc Levels in Leptin-Mediated Nutrient Sensing. <i>Angewandte Chemie</i> , 2018 , 130, 7770-7774	3.6	4
2	Selective Fluorogenic EGlucocerebrosidase Substrates for Convenient Analysis of Enzyme Activity in Cell and Tissue Homogenates. <i>ACS Chemical Biology</i> , 2020 , 15, 824-829	4.9	2
1	Quantifying lysosomal glycosidase activity within cells using bis-acetal substrates <i>Nature Chemical Biology</i> , 2022 ,	11.7	1