Christophe Micheyl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11514162/publications.pdf

Version: 2024-02-01

79 papers 4,939 citations

126858 33 h-index 95218 68 g-index

80 all docs 80 docs citations

80 times ranked 2427 citing authors

#	Article	IF	CITATIONS
1	Influence of musical and psychoacoustical training on pitch discrimination. Hearing Research, 2006, 219, 36-47.	0.9	372
2	Temporal coherence and attention in auditory scene analysis. Trends in Neurosciences, 2011, 34, 114-123.	4.2	360
3	Psychoacoustic Characterization of the Tinnitus Spectrum: Implications for the Underlying Mechanisms of Tinnitus. Audiology and Neuro-Otology, 2002, 7, 358-369.	0.6	322
4	The cocktail party problem: What is it? How can it be solved? And why should animal behaviorists study it?. Journal of Comparative Psychology (Washington, D C: 1983), 2008, 122, 235-251.	0.3	292
5	Perceptual Organization of Tone Sequences in the Auditory Cortex of Awake Macaques. Neuron, 2005, 48, 139-148.	3.8	266
6	Temporal Coherence in the Perceptual Organization and Cortical Representation of Auditory Scenes. Neuron, 2009, 61, 317-329.	3.8	215
7	Perceptual Organization of Sound Begins in the Auditory Periphery. Current Biology, 2008, 18, 1124-1128.	1.8	204
8	Neuromagnetic Correlates of Streaming in Human Auditory Cortex. Journal of Neuroscience, 2005, 25, 5382-5388.	1.7	195
9	The role of auditory cortex in the formation of auditory streams. Hearing Research, 2007, 229, 116-131.	0.9	165
10	Neural Correlates of Auditory Perceptual Awareness under Informational Masking. PLoS Biology, 2008, 6, e138.	2.6	163
11	Auditory stream segregation on the basis of amplitude-modulation rate. Journal of the Acoustical Society of America, 2002, 111, 1340-1348.	0.5	148
12	Involvement of the olivocochlear bundle in the detection of tones in noise. Journal of the Acoustical Society of America, 1996, 99, 1604-1610.	0.5	129
13	Pitch, harmonicity and concurrent sound segregation: Psychoacoustical and neurophysiological findings. Hearing Research, 2010, 266, 36-51.	0.9	107
14	Behind the scenes of auditory perception. Current Opinion in Neurobiology, 2010, 20, 361-366.	2.0	104
15	Pitch perception beyond the traditional existence region of pitch. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7629-7634.	3.3	91
16	Enhanced frequency discrimination near the hearing loss cut-off: a consequence of central auditory plasticity induced by cochlear damage?. Brain, 2003, 126, 2235-2245.	3.7	80
17	Cortical fMRI Activation to Sequences of Tones Alternating in Frequency: Relationship to Perceived Rate and Streaming. Journal of Neurophysiology, 2007, 97, 2230-2238.	0.9	77
18	Human Cortical Activity during Streaming without Spectral Cues Suggests a General Neural Substrate for Auditory Stream Segregation. Journal of Neuroscience, 2007, 27, 13074-13081.	1.7	74

#	Article	IF	CITATIONS
19	Can temporal fine structure represent the fundamental frequency of unresolved harmonics?. Journal of the Acoustical Society of America, 2009, 125, 2189-2199.	0.5	69
20	Objective and Subjective Psychophysical Measures of Auditory Stream Integration and Segregation. JARO - Journal of the Association for Research in Otolaryngology, 2010, 11, 709-724.	0.9	69
21	Activation of medial olivocochlear efferent system in humans: influence of stimulus bandwidth. Hearing Research, 2000, 140, 111-125.	0.9	64
22	Auditory Efferents Facilitate Sound Localization in Noise in Humans: Figure 1 Journal of Neuroscience, 2011, 31, 6759-6763.	1.7	64
23	Influence of peripheral resolvability on the perceptual segregation of harmonic complex tones differing in fundamental frequency. Journal of the Acoustical Society of America, 2000, 108, 263-271.	0.5	55
24	Musical intervals and relative pitch: Frequency resolution, not interval resolution, is special. Journal of the Acoustical Society of America, 2010, 128, 1943-1951.	0.5	52
25	Stronger bilateral efferent influences on cochlear biomechanical activity in musicians than in non-musicians. Neuroscience Letters, 1999, 262, 167-170.	1.0	51
26	Neural adaptation to tone sequences in the songbird forebrain: patterns, determinants, and relation to the build-up of auditory streaming. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2010, 196, 543-557.	0.7	48
27	Evidence for two pitch encoding mechanisms using a selective auditory training paradigm. Perception & Psychophysics, 2002, 64, 189-197.	2.3	44
28	Generalization of Frequency Discrimination Learning Across Frequencies and Ears: Implications for Underlying Neural Mechanisms in Humans. JARO - Journal of the Association for Research in Otolaryngology, 2005, 6, 171-179.	0.9	43
29	Auditory Frequency and Intensity Discrimination Explained Using a Cortical Population Rate Code. PLoS Computational Biology, 2013, 9, e1003336.	1.5	43
30	Characterizing the dependence of pure-tone frequency difference limens on frequency, duration, and level. Hearing Research, 2012, 292, 1-13.	0.9	42
31	Neurodynamics for auditory stream segregation: tracking sounds in the mustached bat's natural environment. Network: Computation in Neural Systems, 2003, 14, 413-435.	2.2	41
32	Effects of temporal fringes on fundamental-frequency discrimination. Journal of the Acoustical Society of America, 1998, 104, 3006-3018.	0.5	36
33	Context dependence of fundamental-frequency discrimination: Lateralized temporal fringes. Journal of the Acoustical Society of America, 1999, 106, 3553-3563.	0.5	36
34	Enhanced frequency discrimination in hearing-impaired individuals: A review of perceptual correlates of central neural plasticity induced by cochlear damage. Hearing Research, 2007, 233, 14-22.	0.9	34
35	Auditory stream segregation and the perception of across-frequency synchrony Journal of Experimental Psychology: Human Perception and Performance, 2010, 36, 1029-1039.	0.7	34
36	Difference in cochlear efferent activity between musicians and non-musicians. NeuroReport, 1997, 8, 1047-1050.	0.6	33

#	Article	IF	CITATIONS
37	Psychometric functions for pure-tone frequency discrimination. Journal of the Acoustical Society of America, 2011, 130, 263-272.	0.5	33
38	Frogs Exploit Statistical Regularities in Noisy Acoustic Scenes to Solve Cocktail-Party-like Problems. Current Biology, 2017, 27, 743-750.	1.8	32
39	Learning in discrimination of frequency or modulation rate: generalization to fundamental frequency discrimination. Hearing Research, 2003, 184, 41-50.	0.9	31
40	Temporal coherence versus harmonicity in auditory stream formation. Journal of the Acoustical Society of America, 2013, 133, EL188-EL194.	0.5	31
41	Behavioral measures of auditory streaming in ferrets (Mustela putorius) Journal of Comparative Psychology (Washington, D C: 1983), 2010, 124, 317-330.	0.3	30
42	Temporal Coherence and the Streaming of Complex Sounds. Advances in Experimental Medicine and Biology, 2013, 787, 535-543.	0.8	30
43	Sequential F0 comparisons between resolved and unresolved harmonics: No evidence for translation noise between two pitch mechanisms. Journal of the Acoustical Society of America, 2004, 116, 3038-3050.	0.5	29
44	Perceptual grouping affects pitch judgments across time and frequency Journal of Experimental Psychology: Human Perception and Performance, 2011, 37, 257-269.	0.7	28
45	Auditory stream segregation for alternating and synchronous tones Journal of Experimental Psychology: Human Perception and Performance, 2013, 39, 1568-1580.	0.7	28
46	Detection and FO discrimination of harmonic complex tones in the presence of competing tones or noise. Journal of the Acoustical Society of America, 2006, 120, 1493-1505.	0.5	27
47	Neurodynamics for auditory stream segregation: tracking sounds in the mustached bat's natural environment. Network: Computation in Neural Systems, 2003, 14, 413-35.	2.2	26
48	Medial olivocochlear system stabilizes active cochlear micromechanical properties in humans. Hearing Research, 1997, 113, 89-98.	0.9	24
49	An evaluation of psychophysical models of auditory change perception Psychological Review, 2008, 115, 1069-1083.	2.7	23
50	Pitch perception for mixtures of spectrally overlapping harmonic complex tones. Journal of the Acoustical Society of America, 2010, 128, 257-269.	0.5	22
51	Does fundamental-frequency discrimination measure virtual pitch discrimination?. Journal of the Acoustical Society of America, 2010, 128, 1930-1942.	0.5	22
52	Neural mechanisms of rhythmic masking release in monkey primary auditory cortex: implications for models of auditory scene analysis. Journal of Neurophysiology, 2012, 107, 2366-2382.	0.9	22
53	Across-frequency pitch discrimination interference between complex tones containing resolved harmonics. Journal of the Acoustical Society of America, 2007, 121, 1621-1631.	0.5	21
54	Neural Representation of Concurrent Harmonic Sounds in Monkey Primary Auditory Cortex: Implications for Models of Auditory Scene Analysis. Journal of Neuroscience, 2014, 34, 12425-12443.	1.7	20

#	Article	IF	Citations
55	Neurodynamics for auditory stream segregation: tracking sounds in the mustached bat's natural environment. Network: Computation in Neural Systems, 2003, 14, 413-435.	2.2	20
56	Across-Channel Timing Differences as a Potential Code for the Frequency of Pure Tones. JARO - Journal of the Association for Research in Otolaryngology, 2012, 13, 159-171.	0.9	19
57	Delay and Temporal Integration in Medial Olivocochlear Bundle Activation in Humans. Ear and Hearing, 2001, 22, 65-74.	1.0	18
58	Comparing models of the combined-stimulation advantage for speech recognition. Journal of the Acoustical Society of America, 2012, 131, 3970-3980.	0.5	18
59	Hearing Out Repeating Elements in Randomly Varying Multitone Sequences: A Case of Streaming?. , 2007, , 267-274.		17
60	Sensory noise explains auditory frequency discrimination learning induced by training with identical stimuli. Perception & Psychophysics, 2009, 71, 5-7.	2.3	17
61	On the choice of adequate randomization ranges for limiting the use of unwanted cues in same-different, dual-pair, and oddity tasks. Attention, Perception, and Psychophysics, 2010, 72, 538-547.	0.7	15
62	Further evidence that fundamental-frequency difference limens measure pitch discrimination. Journal of the Acoustical Society of America, 2012, 131, 3989-4001.	0.5	14
63	Recalibration of the auditory continuity illusion: Sensory and decisional effects. Hearing Research, 2011, 277, 152-162.	0.9	13
64	Contralateral frequency-modulated tones suppress transient-evoked otoacoustic emissions in humans. Hearing Research, 1998, 117, 114-118.	0.9	11
65	Likelihood ratio, optimal decision rules, and correct response probabilities in a signal detection theoretic, equal-variance Gaussian model of the observer in the 4IAX paradigm. Perception & Psychophysics, 2006, 68, 725-735.	2.3	11
66	Toward a Theory of Information Processing in Auditory Cortex. Springer Handbook of Auditory Research, 2012, , 351-390.	0.3	10
67	Likelihood ratio, optimal decision rules, and relationship between proportion correct and d' in the dual-pair AB-versus-BA identification paradigm. Attention, Perception, and Psychophysics, 2009, 71, 1426-1433.	0.7	9
68	Neural Representation of Concurrent Vowels in Macaque Primary Auditory Cortex. ENeuro, 2016, 3, ENEURO.0071-16.2016.	0.9	9
69	Comparing F0 discrimination in sequential and simultaneous conditions. Journal of the Acoustical Society of America, 2005, 118, 41-44.	0.5	8
70	Expectations for melodic contours transcend pitch Journal of Experimental Psychology: Human Perception and Performance, 2014, 40, 2338-2347.	0.7	8
71	Auditory Object Analysis. Springer Handbook of Auditory Research, 2012, , 199-223.	0.3	5
72	Separating the contributions of primary and unwanted cues in psychophysical studies Psychological Review, 2012, 119, 770-788.	2.7	4

#	Article	IF	CITATIONS
73	Pitch Perception: Dissociating Frequency from Fundamental-Frequency Discrimination. Advances in Experimental Medicine and Biology, 2013, 787, 137-145.	0.8	4
74	On the utility of perceptual anchors during pure-tone frequency discrimination. Journal of the Acoustical Society of America, 2020, 147, 371-380.	0.5	3
75	Sequential and Simultaneous Auditory Grouping Measured with Synchrony Detection. , 2010, , 489-496.		3
76	Perception of Across-Frequency Asynchrony by Listeners with Cochlear Hearing Loss. JARO - Journal of the Association for Research in Otolaryngology, 2013, 14, 573-589.	0.9	1
77	Gradual decay and sudden death of short-term memory for pitch. Journal of the Acoustical Society of America, 2021, 149, 259-270.	0.5	O
78	Auditory streaming without spectral cues in hearing-impaired subjects., 2005,, 211-219.		0
79	Rate Versus Temporal Code? A Spatio-Temporal Coherence Model of the Cortical Basis of Streaming. , 2010, , 497-506.		0