Daniel Klocke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1151402/publications.pdf

Version: 2024-02-01

304743 330143 3,125 36 22 37 h-index citations g-index papers 39 39 39 4672 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Longâ€term singleâ€column model intercomparison of diurnal cycle of precipitation over midlatitude and tropical land. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 641-669.	2.7	6
2	Atmospheric Energy Spectra in Global Kilometre-Scale Models. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 74, 280-299.	1.7	8
3	The ICON Single-Column Mode. Atmosphere, 2021, 12, 906.	2.3	3
4	EUREC ⁴ A. Earth System Science Data, 2021, 13, 4067-4119.	9.9	88
5	Atmospheric energy budget response to idealized aerosol perturbation in tropical cloud systems. Atmospheric Chemistry and Physics, 2020, 20, 4523-4544.	4.9	11
6	Climate Statistics in Global Simulations of the Atmosphere, from 80 to 2.5 km Grid Spacing. Journal of the Meteorological Society of Japan, 2020, 98, 73-91.	1.8	55
7	The Added Value of Large-eddy and Storm-resolving Models for Simulating Clouds and Precipitation. Journal of the Meteorological Society of Japan, 2020, 98, 395-435.	1.8	93
8	Employing airborne radiation and cloud microphysics observations to improve cloud representation in ICON at kilometer-scale resolution in the Arctic. Atmospheric Chemistry and Physics, 2020, 20, 13145-13165.	4.9	10
9	Different Representation of Mesoscale Convective Systems in Convection-Permitting and Convection-Parameterizing NWP Models and Its Implications for Large-Scale Forecast Evolution. Atmosphere, 2019, 10, 503.	2.3	20
10	Intercomparison of Gravity Waves in Global Convection-Permitting Models. Journals of the Atmospheric Sciences, 2019, 76, 2739-2759.	1.7	26
11	The Two Diurnal Modes of Tropical Upward Motion. Geophysical Research Letters, 2019, 46, 2911-2921.	4.0	14
12	Gravity Waves in Global Highâ€Resolution Simulations With Explicit and Parameterized Convection. Journal of Geophysical Research D: Atmospheres, 2019, 124, 4446-4459.	3.3	27
13	Assessing the scales in numerical weather and climate predictions: will exascale be the rescue?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180148.	3.4	48
14	Pair Correlations and Spatial Statistics of Deep Convection over the Tropical Atlantic. Journals of the Atmospheric Sciences, 2019, 76, 3211-3228.	1.7	6
15	DYAMOND: the DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains. Progress in Earth and Planetary Science, 2019, 6, .	3.0	239
16	An International Conference that Presents Current Advances in Simulating and Observing Atmospheric Processes. Bulletin of the American Meteorological Society, 2019, 100, ES251-ES254.	3.3	0
17	Investigating the predictability of a Mediterranean tropicalâ€like cyclone using a stormâ€resolving model. Quarterly Journal of the Royal Meteorological Society, 2018, 144, 1598-1610.	2.7	19
18	Future Community Efforts in Understanding and Modeling Atmospheric Processes. Bulletin of the American Meteorological Society, 2018, 99, ES159-ES162.	3.3	1

#	Article	IF	CITATIONS
19	Size-Resolved Evaluation of Simulated Deep Tropical Convection. Monthly Weather Review, 2018, 146, 2161-2182.	1.4	31
20	An automated cirrus classification. Atmospheric Chemistry and Physics, 2018, 18, 6157-6169.	4.9	5
21	Physically Constrained Stochastic Shallow Convection in Realistic Kilometerâ€scale Simulations. Journal of Advances in Modeling Earth Systems, 2018, 10, 2755-2776.	3.8	15
22	Physics–Dynamics Coupling in Weather, Climate, and Earth System Models: Challenges and Recent Progress. Monthly Weather Review, 2018, 146, 3505-3544.	1.4	52
23	Rediscovery of the doldrums in storm-resolving simulations over the tropical Atlantic. Nature Geoscience, 2017, 10, 891-896.	12.9	76
24	Largeâ€eddy simulations over Germany using ICON: a comprehensive evaluation. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 69-100.	2.7	175
25	The Art and Science of Climate Model Tuning. Bulletin of the American Meteorological Society, 2017, 98, 589-602.	3.3	343
26	Stratospheric aerosol-Observations, processes, and impact on climate. Reviews of Geophysics, 2016, 54, 278-335.	23.0	265
27	Assessment of small-scale integrated water vapour variability during HOPE. Atmospheric Chemistry and Physics, 2015, 15, 2675-2692.	4.9	112
28	A comparison of two numerical weather prediction methods for diagnosing fastâ€physics errors in climate models. Quarterly Journal of the Royal Meteorological Society, 2014, 140, 517-524.	2.7	30
29	Climate feedback efficiency and synergy. Climate Dynamics, 2013, 41, 2539-2554.	3.8	54
30	Assessment of different metrics for physical climate feedbacks. Climate Dynamics, 2013, 41, 1173-1185.	3.8	23
31	Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nature Geoscience, 2013, 6, 447-451.	12.9	338
32	Characteristics of Occasional Poor Medium-Range Weather Forecasts for Europe. Bulletin of the American Meteorological Society, 2013, 94, 1393-1405.	3.3	139
33	Parameter estimation using data assimilation in an atmospheric general circulation model: From a perfect toward the real world. Journal of Advances in Modeling Earth Systems, 2013, 5, 58-70.	3.8	41
34	Tuning the climate of a global model. Journal of Advances in Modeling Earth Systems, 2012, 4, .	3.8	334
35	On Constraining Estimates of Climate Sensitivity with Present-Day Observations through Model Weighting. Journal of Climate, 2011, 24, 6092-6099.	3.2	130
36	Climate and carbon-cycle variability over the last millennium. Climate of the Past, 2010, 6, 723-737.	3.4	284