List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11513917/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hypothetical generalized framework for a new imaging endpoint of therapeutic activity in early phase clinical trials in brain tumors. Neuro-Oncology, 2022, 24, 1219-1229.	1.2	9
2	EGFR suppresses p53 function by promoting p53 binding to DNA-PKcs: a noncanonical regulatory axis between EGFR and wild-type p53 in glioblastoma. Neuro-Oncology, 2022, 24, 1712-1725.	1.2	8
3	GBM AGILE: A global, phase 2/3 adaptive platform trial to evaluate multiple regimens in newly diagnosed and recurrent glioblastoma Journal of Clinical Oncology, 2022, 40, TPS2078-TPS2078.	1.6	3
4	Baseline tumor genomic and gut microbiota association with clinical outcomes in newly diagnosed glioblastoma (GBM) treated with atezolizumab in combination with temozolomide (TMZ) and radiation Journal of Clinical Oncology, 2022, 40, 2006-2006.	1.6	3
5	Radiographic read paradigms and the roles of the central imaging laboratory in neuro-oncology clinical trials. Neuro-Oncology, 2021, 23, 189-198.	1.2	11
6	PARP-mediated PARylation of MGMT is critical to promote repair of temozolomide-induced O6-methylguanine DNA damage in glioblastoma. Neuro-Oncology, 2021, 23, 920-931.	1.2	58
7	Integrated analysis of telomerase enzymatic activity unravels an association with cancer stemness and proliferation. Nature Communications, 2021, 12, 139.	12.8	39
8	The promise of DNA damage response inhibitors for the treatment of glioblastoma. Neuro-Oncology Advances, 2021, 3, vdab015.	0.7	16
9	Report of National Brain Tumor Society roundtable workshop on innovating brain tumor clinical trials: building on lessons learned from COVID-19 experience. Neuro-Oncology, 2021, 23, 1252-1260.	1.2	11
10	Molecular Mechanisms of Treatment Resistance in Glioblastoma. International Journal of Molecular Sciences, 2021, 22, 351.	4.1	106
11	Results of a phase I trial to assess the safety of macitentan in combination with temozolomide for the treatment of recurrent glioblastoma. Neuro-Oncology Advances, 2021, 3, vdab141.	0.7	3
12	Window-of-opportunity clinical trial of pembrolizumab in patients with recurrent glioblastoma reveals predominance of immune-suppressive macrophages. Neuro-Oncology, 2020, 22, 539-549.	1.2	98
13	A Phase Ib/II, open-label, multicenter study of INC280 (capmatinib) alone and in combination with buparlisib (BKM120) in adult patients with recurrent glioblastoma. Journal of Neuro-Oncology, 2020, 146, 79-89.	2.9	26
14	<i>EGFR</i> Amplification Induces Increased DNA Damage Response and Renders Selective Sensitivity to Talazoparib (PARP Inhibitor) in Glioblastoma. Clinical Cancer Research, 2020, 26, 1395-1407.	7.0	26
15	Phase I/II study of sorafenib in combination with erlotinib for recurrent glioblastoma as part of a 3-arm sequential accrual clinical trial: NABTC 05-02. Neuro-Oncology Advances, 2020, 2, vdaa124.	0.7	5
16	A Bayesian adaptive randomized phase II multicenter trial of bevacizumab with or without vorinostat in adults with recurrent glioblastoma. Neuro-Oncology, 2020, 22, 1505-1515.	1.2	27
17	Phase I/II study to evaluate the safety and clinical efficacy of atezolizumab (atezo; aPDL1) in combination with temozolomide (TMZ) and radiation in patients with newly diagnosed glioblastoma (GBM) Journal of Clinical Oncology, 2020, 38, 2511-2511.	1.6	7
18	GBM AGILE: A global, phase II/III adaptive platform trial to evaluate multiple regimens in newly diagnosed and recurrent glioblastoma Journal of Clinical Oncology, 2020, 38, TPS2579-TPS2579.	1.6	5

#	Article	IF	CITATIONS
19	The Promise of Poly(ADP-Ribose) Polymerase (PARP) Inhibitors in Gliomas. Journal of Immunotherapy and Precision Oncology, 2020, 3, 157-164.	1.4	2
20	Tie2–FGFR1 Interaction Induces Adaptive PI3K Inhibitor Resistance by Upregulating Aurora A/PLK1/CDK1 Signaling in Glioblastoma. Cancer Research, 2019, 79, 5088-5101.	0.9	17
21	Buparlisib in Patients With Recurrent Glioblastoma Harboring Phosphatidylinositol 3-Kinase Pathway Activation: An Open-Label, Multicenter, Multi-Arm, Phase II Trial. Journal of Clinical Oncology, 2019, 37, 741-750.	1.6	103
22	Prospective Clinical Sequencing of Adult Glioma. Molecular Cancer Therapeutics, 2019, 18, 991-1000.	4.1	15
23	Clinical trial participation of patients with glioblastoma at The University of Texas MD Anderson Cancer Center. European Journal of Cancer, 2019, 112, 83-93.	2.8	15
24	Longitudinal molecular trajectories of diffuse glioma in adults. Nature, 2019, 576, 112-120.	27.8	320
25	Phase 1 leadâ€in to a phase 2 factorial study of temozolomide plus memantine, mefloquine, and metformin as postradiation adjuvant therapy for newly diagnosed glioblastoma. Cancer, 2019, 125, 424-433.	4.1	46
26	EGFR amplification predicted selective sensitivity to PARP inhibitors with high PARP-DNA trapping potential in human GBM Journal of Clinical Oncology, 2019, 37, 2047-2047.	1.6	1
27	Wild-type defined gamma-secretase inhibitor sensitivity and synergistic activity with doxorubicin in GSCs. American Journal of Cancer Research, 2019, 9, 1734-1745.	1.4	3
28	Glioma through the looking GLASS: molecular evolution of diffuse gliomas and the Glioma Longitudinal Analysis Consortium. Neuro-Oncology, 2018, 20, 873-884.	1.2	119
29	Activation of WEE1 confers resistance to PI3K inhibition in glioblastoma. Neuro-Oncology, 2018, 20, 78-91.	1.2	24
30	Phase I study of sorafenib and tipifarnib for recurrent glioblastoma: NABTC 05-02. Journal of Neuro-Oncology, 2018, 136, 79-86.	2.9	21
31	Adaptive Global Innovative Learning Environment for Glioblastoma: GBM AGILE. Clinical Cancer Research, 2018, 24, 737-743.	7.0	154
32	DDIS-03. EGFR AMPLIFICATION INDUCED INCREASED DNA DAMAGE RESPONSE AND PREDICTED SELECTIVE SENSITIVITY TO TALAZOPARIB (PARP INHIBITOR) IN GLIOBLASTOMA STEM-LIKE CELLS. Neuro-Oncology, 2018, 20, vi69-vi69.	1.2	0
33	Phase I Study of DNX-2401 (Delta-24-RGD) Oncolytic Adenovirus: Replication and Immunotherapeutic Effects in Recurrent Malignant Glioma. Journal of Clinical Oncology, 2018, 36, 1419-1427.	1.6	477
34	ACTR-13. A BAYESIAN ADAPTIVE RANDOMIZED PHASE II TRIAL OF BEVACIZUMAB VERSUS BEVACIZUMAB PLUS VORINOSTAT IN ADULTS WITH RECURRENT GLIOBLASTOMA FINAL RESULTS. Neuro-Oncology, 2018, 20, vi13-vi13.	1.2	1
35	EXTH-11. GLIOBLASTOMA STEM CELL GROWTH DEPENDENCE ON NUTRIENTS: MORE THAN BASAL METABOLIC ACTIVITIES. Neuro-Oncology, 2018, 20, vi87-vi87.	1.2	0
36	INNV-15. ANALYSIS OF CHALLENGES TO ACCRUAL IN CLINICAL TRIALS FOR NEWLY DIAGNOSED GLIOBLASTOMA. Neuro-Oncology, 2018, 20, vi141-vi141.	1.2	0

#	Article	IF	CITATIONS
37	ATIM-10. A PHASE I/II CLINICAL TRIAL OF AUTOLOGOUS CMV-SPECIFIC CYTOTOXIC T CELLS (CMV-TC) FOR GLIOBLASTOMA: DOSE ESCALATION AND CORRELATIVE RESULTS. Neuro-Oncology, 2018, 20, vi2-vi3.	1.2	4
38	DRES-05. MOLECULAR EVOLUTION OF DIFFUSE GLIOMAS AND THE GLIOMA LONGITUDINAL ANALYSIS CONSORTIUM. Neuro-Oncology, 2018, 20, vi76-vi76.	1.2	0
39	The natural course of hypermutator gliomas Journal of Clinical Oncology, 2018, 36, 2014-2014.	1.6	5
40	Phase I factorial study of temozolomide plus memantine, mefloquine, and metformin as post-radiation adjuvant therapy for newly diagnosed glioblastoma Journal of Clinical Oncology, 2018, 36, 2044-2044.	1.6	14
41	A phase I/II clinical trial of autologous CMV-specific cytotoxic T cells (CMV-TC) for glioblastoma: Dose escalation results Journal of Clinical Oncology, 2018, 36, 2035-2035.	1.6	6
42	Preclinical therapeutic efficacy of a novel blood-brain barrier-penetrant dual PI3K/mTOR inhibitor with preferential response in PI3K/PTEN mutant glioma. Oncotarget, 2017, 8, 21741-21753.	1.8	16
43	APOBEC3G acts as a therapeutic target in mesenchymal gliomas by sensitizing cells to radiation-induced cell death. Oncotarget, 2017, 8, 54285-54296.	1.8	15
44	MSK1-Mediated β-Catenin Phosphorylation Confers Resistance to PI3K/mTOR Inhibitors in Glioblastoma. Molecular Cancer Therapeutics, 2016, 15, 1656-1668.	4.1	25
45	A randomized phase II trial of standard dose bevacizumab versus low dose bevacizumab plus lomustine (CCNU) in adults with recurrent glioblastoma. Journal of Neuro-Oncology, 2016, 129, 487-494.	2.9	52
46	Prioritization schema for immunotherapy clinical trials in glioblastoma. OncoImmunology, 2016, 5, e1145332.	4.6	13
47	Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma. Cell, 2016, 164, 550-563.	28.9	1,695
48	ATPS-46PRECLINICAL THERAPEUTIC EFFICACY OF A NOVEL BLOOD-BRAIN BARRIER-PENETRANT DUAL PI3K/MTOR INHIBITOR WITH PREFERENTIAL RESPONSE IN PI3K/PTEN MUTANT GLIOMA. Neuro-Oncology, 2015, 17, v28.2-v28.	1.2	0
49	Supratentorial extraventricular anaplastic ependymoma with extracranial metastasis. Journal of Clinical Neuroscience, 2015, 22, 605-607.	1.5	14
50	Randomized phase II adjuvant factorial study of dose-dense temozolomide alone and in combination with isotretinoin, celecoxib, and/or thalidomide for glioblastoma. Neuro-Oncology, 2015, 17, 266-273.	1.2	61
51	Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. New England Journal of Medicine, 2015, 372, 2481-2498.	27.0	2,582
52	Genomically amplified Akt3 activates DNA repair pathway and promotes glioma progression. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3421-3426.	7.1	104
53	Macitentan, a Dual Endothelin Receptor Antagonist, in Combination with Temozolomide Leads to Glioblastoma Regression and Long-term Survival in Mice. Clinical Cancer Research, 2015, 21, 4630-4641.	7.0	56
54	Genetic, epigenetic, and molecular landscapes of multifocal and multicentric glioblastoma. Acta Neuropathologica, 2015, 130, 587-597.	7.7	68

#	Article	IF	CITATIONS
55	Brain Malignancy Steering Committee clinical trials planning workshop: Report from the Targeted Therapies Working Group. Neuro-Oncology, 2015, 17, 180-188.	1.2	28
56	Phase I/II study of erlotinib and temsirolimus for patients with recurrent malignant gliomas: North American Brain Tumor Consortium trial 04-02. Neuro-Oncology, 2014, 16, 567-578.	1.2	140
57	Introduction. Neuro-Oncology, 2014, 16, vii1-vii1.	1.2	1
58	A High Notch Pathway Activation Predicts Response to Î ³ Secretase Inhibitors in Proneural Subtype of Glioma Tumor-Initiating Cells. Stem Cells, 2014, 32, 301-312.	3.2	117
59	Role of AKT signaling in DNA repair and clinical response to cancer therapy. Neuro-Oncology, 2014, 16, 1313-1323.	1.2	110
60	Survival outcome of early versus delayed bevacizumab treatment in patients with recurrent glioblastoma. Journal of Neuro-Oncology, 2014, 119, 135-140.	2.9	29
61	Tissue-specific isoform switch and DNA hypomethylation of the pyruvate kinase PKM gene in human cancers. Oncotarget, 2014, 5, 8202-8210.	1.8	127
62	Identification of prognostic gene signatures of glioblastoma: a study based on TCGA data analysis. Neuro-Oncology, 2013, 15, 829-839.	1.2	87
63	A phase II study of conventional radiation therapy and thalidomide for supratentorial, newly-diagnosed glioblastoma (RTOG 9806). Journal of Neuro-Oncology, 2013, 111, 33-39.	2.9	15
64	Year brings higher impact factor, more submissions for Neuro-Oncology. Neuro-Oncology, 2013, 15, 1-3.	1.2	54
65	Phase 1/1b study of lonafarnib and temozolomide in patients with recurrent or temozolomide refractory glioblastoma. Cancer, 2013, 119, 2747-2753.	4.1	31
66	Novel HSP90 Inhibitor NVP-HSP990 Targets Cell-Cycle Regulators to Ablate Olig2-Positive Glioma Tumor–Initiating Cells. Cancer Research, 2013, 73, 3062-3074.	0.9	21
67	A survey of intragenic breakpoints in glioblastoma identifies a distinct subset associated with poor survival. Genes and Development, 2013, 27, 1462-1472.	5.9	74
68	Gene therapy. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 104, 331-338.	1.8	5
69	Current clinical development of PI3K pathway inhibitors in glioblastoma. Neuro-Oncology, 2012, 14, 819-829.	1.2	117
70	Phase I/II study of sorafenib in combination with temsirolimus for recurrent glioblastoma or gliosarcoma: North American Brain Tumor Consortium study 05-02. Neuro-Oncology, 2012, 14, 1511-1518.	1.2	95
71	Differential Sensitivity of Glioma- versus Lung Cancer–Specific EGFR Mutations to EGFR Kinase Inhibitors. Cancer Discovery, 2012, 2, 458-471.	9.4	304
72	PKM2 Phosphorylates Histone H3 and Promotes Gene Transcription and Tumorigenesis. Cell, 2012, 150, 685-696.	28.9	635

#	Article	IF	CITATIONS
73	The value of cell line validation. Neuro-Oncology, 2012, 14, 675-675.	1.2	4
74	Antitumor Activity of NVP-BKM120—A Selective Pan Class I PI3 Kinase Inhibitor Showed Differential Forms of Cell Death Based on p53 Status of Glioma Cells. Clinical Cancer Research, 2012, 18, 184-195.	7.0	148
75	Phase 2 trial of irinotecan and thalidomide in adults with recurrent anaplastic glioma. Cancer, 2012, 118, 3599-3606.	4.1	13
76	Phase I study of AEE788, a novel multitarget inhibitor of ErbB- and VEGF-receptor-family tyrosine kinases, in recurrent glioblastoma patients. Cancer Chemotherapy and Pharmacology, 2012, 69, 1507-1518.	2.3	59
77	Pharmacokinetic drug interaction between AEE788 and RAD001 causing thrombocytopenia in patients with glioblastoma. Cancer Chemotherapy and Pharmacology, 2012, 69, 281-287.	2.3	11
78	Neurocognitive function in patients with recurrent glioblastoma treated with bevacizumab. Neuro-Oncology, 2011, 13, 660-668.	1.2	94
79	Advances in Translational Research in Neuro-oncology. Archives of Neurology, 2011, 68, 303-8.	4.5	4
80	Combination of 6-thioguanine, capecitabine, and celecoxib with temozolomide or lomustine for recurrent high-grade glioma. Journal of Neuro-Oncology, 2011, 102, 273-280.	2.9	26
81	Age as an independent prognostic factor in patients with glioblastoma: a radiation therapy oncology group and American College of Surgeons National Cancer Data Base comparison. Journal of Neuro-Oncology, 2011, 104, 351-356.	2.9	40
82	Combined action of the dinuclear platinum compound BBR3610 with the PI3â€K inhibitor PXâ€866 in glioblastoma. International Journal of Cancer, 2011, 128, 787-796.	5.1	21
83	Phase II Study of Aflibercept in Recurrent Malignant Glioma: A North American Brain Tumor Consortium Study. Journal of Clinical Oncology, 2011, 29, 2689-2695.	1.6	204
84	ls surgery at progression a prognostic marker for improved 6-month progression-free survival or overall survival for patients with recurrent glioblastoma?. Neuro-Oncology, 2011, 13, 1118-1124.	1.2	100
85	Response as a predictor of survival in patients with recurrent glioblastoma treated with bevacizumab. Neuro-Oncology, 2011, 13, 143-151.	1.2	69
86	Establishment and characterization of clinically relevant models of ependymoma: a true challenge for targeted therapy. Neuro-Oncology, 2011, 13, 748-758.	1.2	21
87	Identification of novel synergistic targets for rational drug combinations with PI3 kinase inhibitors using siRNA synthetic lethality screening against GBM. Neuro-Oncology, 2011, 13, 367-375.	1.2	27
88	AMPK/TSC2/mTOR-signaling intermediates are not necessary for LKB1-mediated nuclear retention of PTEN tumor suppressor. Neuro-Oncology, 2011, 13, 184-194.	1.2	9
89	A phase I/II trial of the histone deacetylase inhibitor romidepsin for adults with recurrent malignant glioma: North American Brain Tumor Consortium Study 03-03. Neuro-Oncology, 2011, 13, 509-516.	1.2	100
90	It Is Time to Include Patients With Brain Tumors in Phase I Trials in Oncology. Journal of Clinical Oncology, 2011, 29, 3211-3213.	1.6	21

#	Article	IF	CITATIONS
91	Phase II trials of erlotinib or gefitinib in patients with recurrent meningioma. Journal of Neuro-Oncology, 2010, 96, 211-217.	2.9	163
92	Review of the complexities of the PI3K/mTOR pathway presages similar handling of other critical topics. Neuro-Oncology, 2010, 12, 763-764.	1.2	2
93	Corticosteroid Use in Patients with Glioblastoma at First or Second Relapse Treated with Bevacizumab in the BRAIN Study. Oncologist, 2010, 15, 1329-1334.	3.7	98
94	A phase I trial of erlotinib in patients with nonprogressive glioblastoma multiforme postradiation therapy, and recurrent malignant gliomas and meningiomas. Neuro-Oncology, 2010, 12, 87-94.	1.2	46
95	A phase I factorial design study of dose-dense temozolomide alone and in combination with thalidomide, isotretinoin, and/or celecoxib as postchemoradiation adjuvant therapy for newly diagnosed glioblastoma. Neuro-Oncology, 2010, 12, 1167-1172.	1.2	28
96	Cellular and in vivo activity of a novel PI3K inhibitor, PX-866, against human glioblastoma. Neuro-Oncology, 2010, 12, 559-569.	1.2	100
97	A phase II trial of erlotinib in patients with recurrent malignant gliomas and nonprogressive glioblastoma multiforme postradiation therapy. Neuro-Oncology, 2010, 12, 95-103.	1.2	252
98	Safety and efficacy of erlotinib in first-relapse glioblastoma: a phase II open-label study. Neuro-Oncology, 2010, 12, 1061-1070.	1.2	112
99	Bevacizumab Alone and in Combination With Irinotecan in Recurrent Glioblastoma. Journal of Clinical Oncology, 2009, 27, 4733-4740.	1.6	2,219
100	Two phase II trials of temozolomide with interferon-α2b (pegylated and non-pegylated) in patients with recurrent glioblastoma multiforme. British Journal of Cancer, 2009, 101, 615-620.	6.4	43
101	NVP-BEZ235, a novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor, elicits multifaceted antitumor activities in human gliomas. Molecular Cancer Therapeutics, 2009, 8, 2204-2210.	4.1	232
102	Phase II study of imatinib mesylate for recurrent meningiomas (North American Brain Tumor) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 302
103	Biomarkers of disease: cerebrospinal fluid vascular endothelial growth factor (VEGF) and stromal cell derived factor (SDF)-1 levels in patients with neoplastic meningitis (NM) due to breast cancer, lung cancer and melanoma. Journal of Neuro-Oncology, 2009, 94, 229-234.	2.9	78
104	Inhibiting PI-3-K for glioma therapy. Cell Cycle, 2009, 8, 335-337.	2.6	5
105	Knockdown of GluR1 expression by RNA interference inhibits glioma proliferation. Journal of Neuro-Oncology, 2008, 88, 121-133.	2.9	77
106	VEGF Trap induces antiglioma effect at different stages of disease. Neuro-Oncology, 2008, 10, 940-945.	1.2	91
107	Bevacizumab News from the Fast Lane?. Neuro-Oncology, 2008, 10, 647-647.	1.2	4
108	Phase II trial of irinotecan and thalidomide in adults with recurrent glioblastoma multiforme. Neuro-Oncology, 2008, 10, 216-222.	1.2	52

7

#	Article	IF	CITATIONS
109	Moving Toward the Next Steps in Angiogenesis Therapy?. Neuro-Oncology, 2008, 10, 939-939.	1.2	3
110	Progression-free survival: An important end point in evaluating therapy for recurrent high-grade gliomas. Neuro-Oncology, 2008, 10, 162-170.	1.2	362
111	Neurooncology clinical trial design for targeted therapies: Lessons learned from the North American Brain Tumor Consortium. Neuro-Oncology, 2008, 10, 631-642.	1.2	27
112	Exploratory Analysis of the Copy Number Alterations in Glioblastoma Multiforme. PLoS ONE, 2008, 3, e4076.	2.5	34
113	Inhibition of both focal adhesion kinase and insulin-like growth factor-I receptor kinase suppresses glioma proliferation in vitro and in vivo. Molecular Cancer Therapeutics, 2007, 6, 1357-1367.	4.1	207
114	Epidermal Growth Factor Receptor Variant III Status Defines Clinically Distinct Subtypes of Glioblastoma. Journal of Clinical Oncology, 2007, 25, 2288-2294.	1.6	260
115	Mitogen-activated Protein Kinase Kinase-4 Promotes Cell Survival by Decreasing PTEN Expression through an NFκB-dependent Pathway. Journal of Biological Chemistry, 2007, 282, 3507-3519.	3.4	87
116	Cell Cycle–Dependent Nuclear Export of Phosphatase and Tensin Homologue Tumor Suppressor Is Regulated by the Phosphoinositide-3-Kinase Signaling Cascade. Cancer Research, 2007, 67, 11054-11063.	0.9	45
117	Transgenic E2F1 Expression in the Mouse Brain Induces a Human-Like Bimodal Pattern of Tumors. Cancer Research, 2007, 67, 4005-4009.	0.9	29
118	Phase I Study of Temozolomide and Irinotecan for Recurrent Malignant Gliomas in Patients Receiving Enzyme-Inducing Antiepileptic Drugs: A North American Brain Tumor Consortium Study. Clinical Cancer Research, 2007, 13, 7133-7138.	7.0	23
119	Adenovirus-Based Strategies Overcome Temozolomide Resistance by Silencing the O6-Methylguanine-DNA Methyltransferase Promoter. Cancer Research, 2007, 67, 11499-11504.	0.9	130
120	c-Jun Downregulation by HDAC3-Dependent Transcriptional Repression Promotes Osmotic Stress-Induced Cell Apoptosis. Molecular Cell, 2007, 25, 219-232.	9.7	67
121	PTEN down regulates AP-1 and targets c-fos in human glioma cells Via PI3-kinase/Akt pathway. Molecular and Cellular Biochemistry, 2007, 300, 77-87.	3.1	31
122	A North American brain tumor consortium (NABTC 99-04) phase II trial of temozolomide plus thalidomide for recurrent glioblastoma multiforme. Journal of Neuro-Oncology, 2007, 81, 271-277.	2.9	61
123	Primary Neurological Tumors. , 2007, , 1053-1080.		1
124	Sustained Angiopoietin-2 Expression Disrupts Vessel Formation and Inhibits Glioma Growth. Neoplasia, 2006, 8, 419-428.	5.3	38
125	PTEN enhances TNF-induced apoptosis through modulation of nuclear factor-κB signaling pathway in human glioma cells. Biochemical and Biophysical Research Communications, 2006, 350, 463-471.	2.1	36
126	Phase II Radiation Therapy Oncology Group trial of conventional radiation therapy followed by treatment with recombinant interferon-β for supratentorial glioblastoma: Results of RTOG 9710. International Journal of Radiation Oncology Biology Physics, 2006, 66, 818-824.	0.8	51

#	Article	IF	CITATIONS
127	Randomized, double-blind, placebo-controlled trial of marimastat in glioblastoma multiforme patients following surgery and irradiationâ Journal of Neuro-Oncology, 2006, 78, 295-302.	2.9	111
128	Phase II trial of temozolomide plus marimastat for recurrent anaplastic gliomas: A relationship among efficacy, joint toxicity and anticonvulsant status. Journal of Neuro-Oncology, 2006, 80, 83-90.	2.9	53
129	E2F1 and Telomerase: Alliance in the Dark Side. Cell Cycle, 2006, 5, 930-935.	2.6	22
130	PAX6 Suppresses the Invasiveness of Glioblastoma Cells and the Expression of the Matrix Metalloproteinase-2 Gene. Cancer Research, 2006, 66, 9809-9817.	0.9	84
131	Phase I/II Study of Imatinib Mesylate for Recurrent Malignant Gliomas: North American Brain Tumor Consortium Study 99-08. Clinical Cancer Research, 2006, 12, 4899-4907.	7.0	404
132	Delta-24 Increases the Expression and Activity of Topoisomerase I and Enhances the Antiglioma Effect of Irinotecan. Clinical Cancer Research, 2006, 12, 556-562.	7.0	51
133	Phase II Trial of Tipifarnib in Patients With Recurrent Malignant Glioma Either Receiving or Not Receiving Enzyme-Inducing Antiepileptic Drugs: A North American Brain Tumor Consortium Study. Journal of Clinical Oncology, 2006, 24, 3651-3656.	1.6	151
134	Prognostic Associations of Activated Mitogen-Activated Protein Kinase and Akt Pathways in Glioblastoma. Clinical Cancer Research, 2006, 12, 3935-3941.	7.0	172
135	A novel CRM1â€dependent nuclear export signal in adenoviral E1A protein regulated by phosphorylation. FASEB Journal, 2006, 20, 2603-2605.	0.5	10
136	Phase II study of the combination of thalidomide and irinotecan in patients with recurrent anaplastic gliomas not on enzyme inducing anticonvulsants. Journal of Clinical Oncology, 2006, 24, 1564-1564.	1.6	2
137	Δ24-hyCD adenovirus suppresses glioma growth in vivo by combining oncolysis and chemosensitization. Cancer Gene Therapy, 2005, 12, 284-294.	4.6	62
138	PAX6 suppresses growth of human glioblastoma cells. Journal of Neuro-Oncology, 2005, 71, 223-229.	2.9	79
139	The Excitatory Amino Acid Transporter-2 Induces Apoptosis and Decreases Glioma Growth In vitro and In vivo. Cancer Research, 2005, 65, 1934-1940.	0.9	80
140	Modeling prognosis for patients with malignant astrocytic gliomas: Quantifying the expression of multiple genetic markers and clinical variables. Neuro-Oncology, 2005, 7, 485-494.	1.2	54
141	Nuclear PTEN-Mediated Growth Suppression Is Independent of Akt Down-Regulation. Molecular and Cellular Biology, 2005, 25, 6211-6224.	2.3	95
142	Integrated Array-Comparative Genomic Hybridization and Expression Array Profiles Identify Clinically Relevant Molecular Subtypes of Glioblastoma. Cancer Research, 2005, 65, 1678-1686.	0.9	296
143	Expression of Transcription Factor E2F1 and Telomerase in Clioblastomas: Mechanistic Linkage and Prognostic Significance. Journal of the National Cancer Institute, 2005, 97, 1589-1600.	6.3	57
144	Downmodulation of El A Protein Expression as a Novel Strategy to Design Cancer-Selective Adenoviruses. Neoplasia, 2005, 7, 723-729.	5.3	13

#	Article	IF	CITATIONS
145	Comparative Effect of Oncolytic Adenoviruses with E1 A or E113-55 kDa Deletions in Malignant Gliomas. Neoplasia, 2005, 7, 48-56.	5.3	35
146	Phase II Study of Fenretinide (NSC 374551) in Adults With Recurrent Malignant Gliomas: A North American Brain Tumor Consortium Study. Journal of Clinical Oncology, 2004, 22, 4282-4289.	1.6	79
147	Polymorphisms of DNA Repair Genes and Risk of Glioma. Cancer Research, 2004, 64, 5560-5563.	0.9	155
148	Phase 2 study of BCNU and temozolomide for recurrent glioblastoma multiforme: North American Brain Tumor Consortium study. Neuro-Oncology, 2004, 6, 33-37.	1.2	57
149	Genetically modified adenoviruses against gliomas. Neurology, 2004, 63, 418-426.	1.1	40
150	A novel E1A–E1B mutant adenovirus induces glioma regression in vivo. Oncogene, 2004, 23, 1821-1828.	5.9	60
151	Phase II study of neoadjuvant 1, 3-bis (2-chloroethyl)-1-nitrosourea and temozolomide for newly diagnosed anaplastic glioma. Cancer, 2004, 100, 1712-1716.	4.1	49
152	Differential activation of the Fas/CD95 pathway by Ad-p53 in human gliomas. International Journal of Oncology, 2004, 24, 409-17.	3.3	5
153	Current therapies for glioblastoma. Clinical Advances in Hematology and Oncology, 2004, 2, 572-3.	0.3	0
154	Mechanisms underlying PTEN regulation of vascular endothelial growth factor and angiogenesis. Annals of Neurology, 2003, 53, 109-117.	5.3	81
155	Src Family Protein-tyrosine Kinases Alter the Function of PTEN to Regulate Phosphatidylinositol 3-Kinase/AKT Cascades. Journal of Biological Chemistry, 2003, 278, 40057-40066.	3.4	218
156	Preclinical Characterization of the Antiglioma Activity of a Tropism-Enhanced Adenovirus Targeted to the Retinoblastoma Pathway. Journal of the National Cancer Institute, 2003, 95, 652-660.	6.3	314
157	Phase II Evaluation of Temozolomide and 13-cis-Retinoic Acid for the Treatment of Recurrent and Progressive Malignant Glioma: A North American Brain Tumor Consortium Study. Journal of Clinical Oncology, 2003, 21, 2305-2311.	1.6	151
158	Anaplastic Oligodendrogliomas: Prognostic Factors for Tumor Recurrence and Survival. Oncology, 2003, 65, 259-266.	1.9	72
159	Phase I Trial of Adenovirus-Mediated p53 Gene Therapy for Recurrent Glioma: Biological and Clinical Results. Journal of Clinical Oncology, 2003, 21, 2508-2518.	1.6	364
160	The expression of PAX6, PTEN, vascular endothelial growth factor, and epidermal growth factor receptor in gliomas: relationship to tumor grade and survival. Clinical Cancer Research, 2003, 9, 3369-75.	7.0	145
161	Toward better early-phase brain tumor clinical trials: A reappraisal of current methods and proposals for future strategies. Neuro-Oncology, 2002, 4, 268-277.	1.2	41
162	Promoter Analysis of Tumor Suppressor Gene PTEN: Identification of Minimum Promoter Region. Biochemical and Biophysical Research Communications, 2002, 292, 422-426.	2.1	37

#	Article	IF	CITATIONS
163	Phase II Trial of Temozolomide Plus the Matrix Metalloproteinase Inhibitor, Marimastat, in Recurrent and Progressive Glioblastoma Multiforme. Journal of Clinical Oncology, 2002, 20, 1383-1388.	1.6	184
164	Motif analysis of the tumor suppressor gene MMAC/PTEN identifies tyrosines critical for tumor suppression and lipid phosphatase activity. Oncogene, 2002, 21, 2357-2364.	5.9	54
165	A phase II trial of thymidine and carboplatin for recurrent malignant glioma: a North American Brain Tumor Consortium Study. Neuro-Oncology, 2002, 4, 109-14.	1.2	6
166	MMAC/PTEN tumor suppressor gene regulates vascular endothelial growth factor-mediated angiogenesis in prostate cancer. International Journal of Oncology, 2002, 21, 469-75.	3.3	15
167	Suppression of matrix metalloproteinase-2 gene expression and invasion in human glioma cells by MMAC/PTEN. Oncogene, 2001, 20, 6669-6678.	5.9	107
168	Tumor Suppressor MMAC/PTEN Inhibits Cytokine-induced NFκB Activation without Interfering with the IκB Degradation Pathway. Journal of Biological Chemistry, 2001, 276, 11402-11408.	3.4	81
169	Â-Radiation Sensitivity and Risk of Glioma. Journal of the National Cancer Institute, 2001, 93, 1553-1557.	6.3	92
170	A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene, 2000, 19, 2-12.	5.9	679
171	Neurologic complications of cancer therapy. Current Treatment Options in Neurology, 1999, 1, 428-437.	1.8	24
172	Altered actin cytoskeleton and inhibition of matrix metalloproteinase expression by vanadate and phenylarsine oxide, inhibitors of phosphotyrosine phosphatases: Modulation of migration and invasion of human malignant glioma cells. Molecular Carcinogenesis, 1999, 26, 274-285.	2.7	28
173	Altered actin cytoskeleton and inhibition of matrix metalloproteinase expression by vanadate and phenylarsine oxide, inhibitors of phosphotyrosine phosphatases: Modulation of migration and invasion of human malignant glioma cells. Molecular Carcinogenesis, 1999, 26, 274-285.	2.7	1
174	Response and progression in recurrent malignant glioma. Neuro-Oncology, 1999, 1, 282-288.	1.2	34
175	Biological Response Modifiers in the Treatment of Malignant Brain Tumours. CNS Drugs, 1998, 10, 11-24.	5.9	Ο
176	The functional role of tumor suppressor genes in gliomas. Neurology, 1998, 51, 1250-1255.	1.1	40
177	Enhancement of radiosensitivity of wild-type p53 human glioma cells by adenovirus-mediated delivery of the p53 gene. Journal of Neurosurgery, 1998, 89, 125-132.	1.6	70
178	Tumor Suppressor Gene Therapy for Brain Tumors. , 1998, , 205-229.		0
179	Characterization of p53 and p21 Functional Interactions in Glioma Cells en Route to Apoptosis. Journal of the National Cancer Institute, 1997, 89, 1036-1044.	6.3	124
180	Suppression of transformed phenotype and tumorigenicity after transfer of chromosome 4 into U251 human glioma cells. Genes Chromosomes and Cancer, 1997, 20, 260-267.	2.8	6

#	Article	IF	CITATIONS
181	Modulation of Serine Proteinases and Metalloproteinases During Morphogenic Glialâ€Endothelial Interactions. Journal of Neurochemistry, 1996, 66, 1657-1664.	3.9	11
182	Two tumor suppressive loci on chromosome 10 involved in human glioblastomas. Genes Chromosomes and Cancer, 1995, 12, 255-261.	2.8	76
183	Use of [18F]fluorodeoxyglucose positron emission tomography in patients with primary malignant brain tumors. Annals of Neurology, 1993, 33, 540-548.	5.3	102
184	Delayed neurotoxicity of intraventricular interleukin-2: A case report. Journal of Neuro-Oncology, 1993, 15, 265-267.	2.9	29
185	The Treatment of Anaplastic Oligodendrogliomas and Mixed Gliomas. Neurosurgery, 1993, 32, 365-371.	1.1	97
186	Adjuvant chemotherapy with carmustine and cisplatin for patients with malignant gliomas. Journal of Neuro-Oncology, 1992, 12, 131-5.	2.9	22
187	A pilot study of recombinant interferon beta (IFN-βser) in patients with recurrent glioma. Journal of Neuro-Oncology, 1990, 9, 29-34.	2.9	19
188	Inhibition of epidermal growth factor receptor activity by retinoic acid in glioma cells. Journal of Cellular Biochemistry, 1990, 42, 83-94.	2.6	24
189	Differential Amplification of the TCF- $\hat{I}\pm$ Gene in Human Gliomas. European Journal of Implant and Refractive Surgery, 1990, 2, 201-205.	0.3	36
190	The modulation of astrocytic differentiation in cells derived from a medulloblastoma surgical specimen. Journal of Neuro-Oncology, 1989, 7, 329-338.	2.9	22
191	In vitro chemosensitivity testing and its clinical application in human gliomas. Neurosurgical Review, 1989, 12, 197-203.	2.4	28
192	Growth inhibitory effect of recombinant ? and ? interferon on human glioma cells. Journal of Neuro-Oncology, 1987, 5, 323-330.	2.9	26
193	Expression of epidermal growth factor receptor and associated glycoprotein on cultured human brain tumor cells. Journal of Cellular Biochemistry, 1986, 32, 1-10.	2.6	25